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Background and motivation

Proposal: Evolving Bit Sparsity Patterns for Hardware-Friendly Inference of

Quantized Deep Neural Networks
Design and implementation detalils
Experiment results

Conclusion
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Pervasive DNN applications

DNNs are widely used:

o

Translation

Face recognition

Image classification

Recommendation systems
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DNN model size and computation are

increasing exponentially
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DNN Acceleration
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Nowadays, accelerators are gaining a

lot of traction, as more and more DNNs
become targets for accelerations.

DNN Processing Units

ASICs
1ninti

MS BrainWave Cerebras
Baidu SDA Google TPU
Deephi Tech Graphcore
ESE Groq
Teradeep Intel Nervana
Etc. Movidius
Wave Computing
Etc.

Processing Alternatives for DNNs [Source: Microsoft]
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DNN Acceleration ;
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NN Acceleration ;
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Inference with low precision on
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GPU [Source: NVIDIA]

DESIGN
AUTOMATION




El

“'“'E;Eg:

Challenges in Compression Technlques

Deployment
% Model
g Optimization
> - | —
dﬁ M\ /1

Compression

@ 1) Quantization methods focus on improving the compression rate of

ultra low-precision DNN models, resulting in significant accuracy losses.

® 2) Sparsification methods need additional indexing overhead for

addressing non-zero elements and irregular access/execution patterns.

3) Sparsification or ultra low-precision quantization methods always

introduce ancillary overheads, which is implementation-unfriendly.
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Overview of Our EBSP Algorithm "‘"‘Hﬁ

We revisit the quantization process from a new angle of bit-level sparsity

$

The reduction of the precision of an operand can be taken as forcing one or more

Quantization

bits among the operand to be zero (lower significant bit is more likely to be zero)

Pruning bits

Quantization can be viewed as increasing bit-level sparsity among the
operand
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Overview of Our EBSP Algorithm k=

Coupling Quantization with Hardware

Qi
/!
® The proposed quantization scheme incorporatin Ut A
proposed q P g (\~ o0 B AL
o o
the bit sparsity pattern can be consideredasa @ _ _ _ _ 8 _ X B 0 T //g ]
S Y- —im |
. . Sa— Bit Sparsity Pattern g /| b
variant of the non-uniform quantization. | sl 3Q 1 A .
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Low bit-width
- Eliminate multiplication operations in the (quantized) DNN.
- Address the non-negligible accuracy loss of quantization ® (&) pEsiaN

[ais™

. "% with low bit-width.




TS -

Overview of Our EBSP Algorithm ;
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Complex Multiplication “. Simple Multiplication (Shift) # O
: T i
High Accuracy @ Low Accuracy High Accuracy

Introduce only hardware
that assists in combining

LUT entries to realize
multiplications.

LUTs can be reconfigured to support different bit-width

the reduced operand precision enables fewer LUT entries
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Overview of Our EBSP Algorithm

Problem in the LUT-based Scheme: We divide the training

® An excessive number of entries to cover all the process into three phases

possible combinations of weights and activations. sequentially:

* To compute a multiplication with INT8 quantization in one cycle,

65,536 (2° X 28 combinations) entries are needed in the LUT. Masking

Forward passing

Bit Sparsity Pattern

[&; E § g Soft Quantized Weight Quantized Weight Matrix
Matrix (Trainable) Backward pass with bit sparsity pattern

Backward passing

Bit Mask

> Forward pass

o
<

Bitwidth
p=5 4 3 2 1 Pattern

allow '1' to appear in
P » the consecutive 3 bits.

Bitwidth
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A novel integrated training method
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Overview of Our EBSP Algorithm I

Bit Sparsity Pattern

Soft Quantized Weight Quantized Weight Matrix °
[m Matrix (Trainable) Backward pass with bit sparsity pattern MaSklng

v
-

* the weight matrix is

quantized to the target bit-

Bit Mask

——

Bitwidth I "'t ;
-:E:. p=5 4 3 2 1. Pattern | o oW — ‘oappearin

.

" Bitwidth > o the consecutive 3 bits. sparsity constrain in the bits
A novel integrated training method

o
<

within the target bit-width.

bit sparsity constraint is that a maximum of 3

consecutive ‘1’s exists in the bits within the weights
at a given bit-width.
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Overview of Our EBSP Algorithm

Bit Sparsity Pattern
[m Soft Quantized Weight Quantized Weight Matrix
. Matrix (Trainable) Backward pass with bit sparsity pattern
v
-
Bit Mask
-
WEE oneripe
_ nwi allow '1' to appear in
N B P=> 4 3 2 1, Pattern | e consecutive 3 bits.

e A novel integrated training method

The layer computations are carried out with the bit sparsity

pattern of the quantized weight matrices.
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Masking

Forward passing

* the original weight matrices
are quantized prior to

passing through masking
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Overview of Our EBSP Algorithm I

Bit Sparsity Pattern
Soft Quantized Weight Quantized Weight Matrix °
[m Matrix (Trainable) Backward pass with bit sparsity pattern MaSklng
v .
- Forward passing
Bit Mask °
o Backward passing
——
|« S >| Forward pass . _
.:E:. 5 4 32 1 Pattern allow '1' to appearin . dd I. 0
< = P= » the consecutive 3 bits. a a norma lzathn term to

~ Bitwidth _ .
A novel integrated training method the loss to decay the weights

toward the quantized one.
ADMM for Weight Quantization:

higher compression ratio and lower accuracy
degradation
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@ PE is designed with two

components:

* steering logic «

* arithmetic logic

The steering logic is composed of leading one detector (LOD) that dynamically

locate the most significant "1' bit and a multiplexer that extracts significant
digits to send to the LUT.

» LUT

shift:ar

)

ZV

Accumulation Unit

MUX ‘s
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@ PE is designed with two

components:
* steering logic

» arithmetic logic «

The arithmetic logic is composed of a LUT with few entries, adder, and

shifter (e.g., barrel shifter) that implements the multiplication.

A
Y
LOD
a
n n
“HF
e e LT
>
(shifter

ZV

Accumulation Unit
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Overview of Our EBSP Architecture ;

Initialization . Computation .~ Writeback _
Cycle 0 | Cycle 1 | Cycle 2 I Cycle 3 : Cycle 4 | Cycle 5 I Cycle 6 Cycle 7 Cycle 8
. I
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Load the
parameter
matries

Op (3,6)
locate the
power: 1,2

|
|
|
|
|
|
|
|
| 36

|
|
3 412) I(6 2 9 |
o 42 # 3 : I 12=48
+ =
Activation Weight . 2+41=3
Matrix : Matrix : : power: 2,1 : : :
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| I locate the 01=3 '
| | | signal: 0,1 " | ’ | | 48 +12460
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| I | Iggai:]éztﬁé fidd the power: Psum send to Write the
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| | ! | st | | | !
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| | ! I | I I |
(a) execution pipeline of the Computation Optimization Step
‘;I Weight Buf. |
+ —
=l =
- SFU 15« JE 5 ]2« = .
(Quantizer) g'n:: — PE Array 13 ® 5a Y&
A =T =
Step 1: ‘ ] | Step 2: } Step 3: |
Quantization Computation Optimization Generate Activation

(b) Illustration of the EBSP that runs each modules.
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Experiment Settings ;
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® Modeling architecture

® Dataset Network
 CIFAR-10 * AlexNet e Simulation
* ImageNet * VGGNet * CACTI
* ResNet
 MobileNet
Eyeriss [4] | BitFusion [24] | WAX [10] | OLAccel [20] | EBSP
Bit-width 16-bit 4-bit 8-bit 4&16-bit | 6-bit (3)"
Data Format Integer Integer Fixed-point Integer Integer
# PEs 224 3168 102 2499 4818
Area (mmZ) 0.32 0.32 0.32 0.32 0.32

" this denotes the length of bit sparsity pattern, which determines LUT entries.
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Bit Percentage
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CIFAR-10 ImageNet

AlexNet

EBSP

Eye riss R ]
Eve riss sl el atatala
OLAccel

BitFusion

CIFAR-10
ResNetl18

M 4-bit B 5-bit

ImageNet

INT8) and WAX (full fixed-point 8-bit), and a 2.2% accuracy improvement over the OLAccel.

significant 4.32% accuracy improvement over OLAccel.

CIFAR-10: EBSP shows nearly no accuracy loss compared to Eyesiss (full INT16), BitFusion (full

ImageNet: EBSP shows a 0.31% accuracy loss compared to Eyesiss, WAX and BitFusion and a

El

100%
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AN § oL 80%
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CIFAR-10 ImageNet | CIFAR-10 ImageNet CIFAR-10 ImageNet
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Experiment Results — Energy & Performanc ;

| WCORE OGlobal Buffer @ DRAM |
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1

0.8
0.6
0.4
0.2
0 wi _— wy - w - w - v -
24 5§ 32 8 H|8 52 8 H|2 52 8 L8 5 28 5252 Y G
g 2 2 2 8|z 8 =2 2 8|l 3= 2 8|l 53 = 2 8|l 3 = 2 8
S = 3 g o 3 T 3 & o 3 g o 3
= o = o = (o] = o = o
o (aa] o [2a] o0
ResNet-18 ResNet-50 AlexNet VGG-16 MobileNet-V2

® Taking ResNet-50 as an example, compared to
Eyeriss, BitFusion, WAX and OLAccel, EBSP
consumes 87.3%, 79.7%, 75.2% and 58.9% less

energy, respectively.
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Experiment Results — Energy & Performance ;

| ®CORE OGlobal Buffer mDRAM |

iy

“'“'E;Eg:

0.8

0.6

0.4

0.2

0
2 S % 8 3|8 s T 34 s T 3% 5 3 8 |8 S z 5
'@Eggag%ggag%ggagéggagégga
e o |2 & |"& o |®"g & |*g%& o Compared to Eyeriss, EBSP achieves nearly 93%

ResNet-18 ResMNet-50 AlexNet VGG-16 MobileNet-V2

acceleration improvement.

—

M Eyeriss M BitFusion EWAX [OOLAccel [JEBSP

1
. 0.8
® Taking ResNet-50 as an example, compared to 0.6
Eyeriss, BitFusion, WAX and OLAccel, EBSP o H H
| Hﬂﬂ HHI_I [ Hﬂm i

nsum 3% 7%, 75.2% an 0% | 0
consumes 873 1 79-7% 75 d d589 €55 ResNet-18  ResNet-50 AlexNet VGG-16  MobileNet-V2

energy, respectively.
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Experiment Results — Pattern Length %

0.4 0.6%
o)
€ 03 0.4% B
O .y
£ 0.2 0.2% G
=
%o.l H H H H 0.0% 3
c <<
L
0 -0.2%

4-bit 4-bit 5-bit 5-bit 6-bit 6-bit 6-bit
2) 6B) @ (3 (2 (3) (4

[JEnergy =r—Acc loss

® EBSP has the capability of tuning the length of bit sparsity pattern to sustain the

same accuracy levels as Eyesiss, while gaining notable energy efficiency.
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Experiment Results — Pattern Length %

0.4 0.6%
o)
€ 03 0.4% B
O .y
£ 0.2 0.2% G
=
%m H H H H 0.0% 3
c <<
L
- -0.2%

(=]

4-bit 4-bit 5-bit 5-bit 6-bit 6-bit 6-bit
2) 6B) @ (3 (2 (3) (4

[JEnergy =r—Acc loss

® EBSP has the capability of tuning the length of bit sparsity pattern to sustain the

same accuracy levels as Eyesiss, while gaining notable energy efficiency.

® Quantized DNNs with bitwidth of 5-bit and pattern length of 3, EBSP achieves an
optimal point (0.13% accuracy loss with 97.3% energy reduction over Eyeriss) on

ImageNet
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Conclusion

novel hardware-friendly quantization algorithm

* form bit sparsity patterns in quantization-aware training

* reap the full advantages of sparsity and quantization

An efficient execute-search dual-engine PIM-based architecture
* Non-Multiplication Engine
* Execution Flow

* Minimum Required Modifications

Keep high accuracy while gaining large performance

improvement
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Thank you !

EBSP: Evolving Bit Sparsity Patterns for Hardware-
Friendly Inference of Quantized Deep Neural Networks
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