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Background and motivation

Proposal: ReRAM-based Processing-in-Memory Architecture for Deep

Hashing Acceleration
Design and implementation detalils
Experiment results

Conclusion
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Search Engines

Challenge in big
data applications

- Facebook: more than 1
billion images/month
- Taobao: more than 28.6

billion images
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Image Retrieval in General i

Image retrieval is reduced to nearest

neighbor search in high dimensional space

Challenges

Nearest Neighbor (NN) Search: i g B
- Searching: Slow retrieval efficiency EI

- Storage: High memory consumption
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Deep Hashing i

Images are represented by binary codes

Hash(dolphin) Hash(cat) Hash(cat)

0011101 1100000 1100001
\\ ,’\
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™ Dist T sim| ™ Dist 1 sim T"

Fast search can be carried out via Hamming
distance measurement. (XOR operation)
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Hamming Distance

Hash Layer ___9E|£3_U_|f’i_ti0n AND Ranking Considerable
DNN Backbone : N B : fn T T cwery’
b Bl i m—a— | computational resources:
| E N I EEEEEEEE
ili|> — fi|>illl|1|||1|| 3  Feature extraction
| | [ @
: | : 3
|l R : — . - -
L I — i (TIII Iz Hammlng distances
| = calculation
( Phase | j I [ Phase Il A | [ Phase III ]
\_Feature Extraction | Hash Generation ) | Retrieval Recommending platform
Benefits: in Taobao:
- High compression ratio (scalability) « requires hash computations
- Fast similarity calculation with Hamming on 600 billion entries.
distance (efficiency) (‘.
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RRAM-based Multiply-Accumulate Computatloﬁ

‘%TE LRS( ‘1’ ) i [ Ex situ training ights o Weight transfer é K%
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Top Electrode B > | S| ) Q
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Saves the weights on ReRAM to avoid massive data movement
Execute GEMM by gathering the analog currents in vertical bit-lines,

effectively reduce the computing complexity from 0(n? ) to 0(1).

In-situ analog MAC capabilities of the crossbar memory structures: (.
an effective approach to the memory wall. b N AUTOMAT|ON
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ReRAM-Based Content-Addressable Memory
2T2R TCAM cell ::' pre
Match: ML remains high Match line (ML) })_
------ s
HRSZ ZLRS| |LRSZ, ZHAS HRSZ,  ZLRS
B H HoH 2
Metal-oxide =558 N ' | | L B i
RRAMyw. o ~bf ._ _ /ﬂeta[-o/:id | Mismatch: ML pulled down' . ' : | I]:':@
Gi0, v LRsZ ZHRS| |LRSZ, ZHRS HESE ok LS |
L L | e r N
SL SL

‘ Search data drivers (for example, search word 10......1°) ‘

ReRAM-based TCAM (Ternary CAM) realizes bitwise XNOR-based search operations on
each pair of cells by applying complementary bias voltages to the ReRAM devices

® TCAM is often used in hardware implementation of in-memory computing for parallel

search of large datasets because of its high speed and energy-efficiency.
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MOTIVATION AND KEY IDEA

The backbone
network

Challenges
Features Vector-Matrix MAC
) — Multiplication Computin .
2t y=xM o 09 ® Massive number of searches
* the leakage current mechanism can
Hash Hash Sequence Interface
Generation ||  Conversion ® circuits check only whether two contents
l are equal or not
Hamming Distance CAM )
Image Retrieval —>»| Calculation and Computing ® Extreme CAM overhead
Ranking Enaines .
* The gallery hash sequences stored in
< > | <« > < > the ReRAM CAM are determined by
Deep Hash Module Key Computation Part Functional Component the length of hash sequences.
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Overview of Our PIM-DH Algorithm mﬂ%ﬁ
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» Relevance

Hash codes of the represented features with stronger relevance are merged, some of the merged codes are pruned away.

Goal:
- represent the whole query hash sequence with fewer hash codes while

guaranteeing the retrieval accuracy of images.
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® Forward pass

» Step1: the relevance
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» Relevance

\

Hash codes of the represented features with stronger relevance are merged, some of the merged codes are pruned away.

We integrate the training process to evolve hash
code sparsity by enforcing relevance-wise

restrictions at every training iteration.
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Hash Seq »Pruning
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® Forward pass
N D s el .
T G' Inference » Step2: the hash
Mask . ofe
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Hash codes of the represented features with stronger relevance are merged, some of the merged codes are pruned away.

We integrate the training process to evolve hash
code sparsity by enforcing relevance-wise

restrictions at every training iteration.
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» Relevance
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Hash codes of the represented features with stronger relevance are merged, some of the merged codes are pruned away.

We integrate the training process to evolve hash

code sparsity by enforcing relevance-wise
restrictions at every training iteration.

® Forward pass

* Step3: the hash
computations are
carried out with the
sparse version of the

hash sequence.
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Overview of Our PIM-DH Algorithm ;
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» Relevance
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Hash codes of the represented features with stronger relevance are merged, some of the merged codes are pruned away.

® The r-percentile of relevance of features, which exceeds r*L of them,

is recorded.

@ The average value of features of all these r-percentiles is denoted as

DESIGN

threshold, which can eliminate the outputs in the top r portion. U ") AUTOMATION
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Overview of Our PIM-DH Architecture ;

Tile
+| MAC Computing Engine (1) MAC| | [MAC
MAC Computing Engine ___y IRXbar Bus ® ® ® ® ®
MAC MAC
dh) a-’ (8) () (&) (8)
'
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Output Register | o
*
Pooling, Activation Unit I

Q3: How to support efficient Deep Hashing algorithm?

® Vector-Matrix Multiplication: can be efficiently completed by MAC

Compute Engines, consisting of ReRAM crossbars (.
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Overview of Our PIM-DH Architecture ;
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To CAM

Q3: How to support efficient Deep Hashing algorithm?

® Hash Sequence Conversion: compares the image signatures generated by
feature extraction with the threshold to yield the binary hash sequencegor

! image retrieval. This can be supported by Interface Circuits (2.
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T Q3: How t t efficient Deep Hashi
mac| | Imac| | || | |cam] | |cam T 3: How to support efficient Deep Hashing
X—R—Q@—Q—| |aY __ V& - |
mac|  [mac| || |cam|  |cam _,ﬁ;,_ ) aIgOrlthm?
QR Q==( 7z B¢ i . , ,
mac| | [mac| | |CF| | [cam| - |cau ﬂ%k Hamming Distance Calculation and
®—R—R—Q—® Pl U -
wac| = [mac|  [Sre] T [cam] © [cam e Ranking: can be efficiently processed by
=R out 128 DFF Counter| CAM compute engine, consisting of
clkl \j > [
o 1@331 287 CAM crossbar@® assisted with dedicated

lightweight circuit@®.

The main idea is to architect an extra circuit to capture the
latency of leakage current when the mismatch happens

among the query and gallery sequences.
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Experiment Results — mismatched bits of CA

il
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< 0.75 —— mismatch bits=1
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time(ns)
The voltage of the match line and the output of
the SA versus mismatched bits

@ The voltage pull-down is

attributed to the increment of
mismatched bits on the same

match line.

PIM-DH records the time of
discharge to identify the
number of mismatched bits

by the designed circuits.
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Experiment Results — Energy & Performance ;
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® PIM-DH achieves 4.75E+03 speedup and 4.64E+05 energy reduction over CPU,

2.30E+02 speedup and 3.38E+04 energy reduction over GPU on average,

respectively.

over PIM design.

® PIM-DH can also achieve an average 17.49 X speedup and 41.38 X energy reduction
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Experiment Results — length of hash sequence %

o Speedup mmm Energy-efficiency =#—mAP

50 0.8

=

g 40 0.7

S 530 0.6 %

— O

£ 20 05 €
O

@

S 0 0.3

16 32 438 64 128
The length of hash sequence

® HashNet with a short hash sequence shows the best performance on
PIM-DH.

@ HashNet with a long hash sequence shows the most significant energy

efficiency on PIM-DH.
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Conclusion ;

® A novel hash sequence pruning algorithm
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e filter out redundant hash codes

® An efficient execute-search dual-engine PIM-based architecture

* MAC compute engine
* interface circuits

* tailored CAM compute engine

® Keep high accuracy while gaining large performance

improvement
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Thank you !
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