JULY 10 - 14, 2022
MOSCONE WEST CENTER

=5
e
_r;l,'

i
.
Z=3

==
=

s

==

=
=

e

=

DESIGN
AUTOMATION

CONFERENCE

0 TR
NN RSN e AN
\ \ N NN
//. N ///, AN
UL
\\\

\)

>

SATO: Spiking Neural Network Acceleration
via Temporal-Oriented Dataflow and
Architecture

Fangxin Liu (Speaker)

Wenbo Zhao, Zongwu Wang, Yongbiao Chen, Tao Yang, Zhezhi
He, Xiaokang Yang and Li Jiang*

DESIGN
AUTOMATION

Shah Jiao Tong University

2

R T

Artificial Intelligence Instifus

Outline ;

]

L

Background and motivation

Proposal: Spiking Neural Network Acceleration via Temporal-Oriented

Dataflow and Architecture
Design and implementation detalils
Experiment results

Conclusion

® L& pESIGN
b%nuromnﬂou
A COr IENC

Diverse DNN models and

use cases on various

devices
Challenges
Face Recognition /M
(&)
o EI
Speech Recognition Energy Latency

X

-A

4 Translation Language
[, 4 DNN

® L& pESIGN
r. AUTOMATION
A CONFERENCE

Spiking Neural Network "“"Hﬁ

SNN: S —
- Increasing the information density due |, 11 | > —_Neuron
to the spike train over the time window “ I A WJ ALl Binary vens
- Sparse additions - g
Features Spiking NN
Requirement of repeated processing spike over the time window
E
- SNNs iterate over all the neurons for each time step "ergy
- Accumulating spikes over multiple time steps leads to more
operations
- Alarger number of time steps represent the longer '-atency
! network latency. :I— =(: DESIGN
: r.‘ AUTOMATION

>

<
<

>

T

Recent studies have shown temporal-encoded SNNs
with their inherent higher sparsity and ability to
encode temporal information in inputs can match the

accuracy of an ANN, even on large-scale datasets.

® Rate-encoded SNN:

e converts an input pixel value
into the spike train consist of

multiple spikes.

®| Temporal-encoded SNN:

* converts an input pixel value
into the spike train consist of

the single spike.

g

» U T) AUTOMATION

B =T

What Determines SNN Accelerator Efficiency &

—

Existing dataflow in SNN accelerators ;

t=1

NEURON i

Y

Integratio

Spike Train
i - @
o
% 2 | 1
m
£ .
=
TH:--1----

F 1

Accumulation

D e

Chronological Dependence

t=t+1

Vinre @Eﬁngle Spik
Vme 9

[1]

->

PSUM = 0;

form=0toM—-1{
PPn,t +=T5; % Wm,n;

}

PSUM += PP,

if PSUM > Threshold {

Q0D @

. Spatial Loop
. Integrate Spikes

- Accumulation
- Comparison

Fire the spike of neuron n at time-step t;

Module Name

Modules

Cycles

Integrate Spikes TxM o(T)
Comparator T o(T)
Accumulator T o(T)
Total Cycles O(NT)

Map the post-synaptic neurons calculations
onto PEs in parallel and integrate spikes along
the time steps in serial.

TS -

H]

ik

The accelerator
processes the spikes as
follows:

® 1.integrate the spikes
at time step t;

DESIGN
AUTOMATION

Existing dataflow in SNN accelerators ;

t=1 NEURON i

Y

Accumulatign

D

Y

Integratio&l

Spike Train
i - @
o
% 2 | 1
m
£ .
=
TH:--1----

F 1

t=t+1

Chronological Dependence

thre

Vﬂ"l [

[1]

Single Spik

)
o

->

PSUM = 0;

form=0toM—-1{
PPn,t +=T5; % Wm,n;

}

PSUM += PP,

if PSUM > Threshold {

Q0D @

Module Name

Modules

Cycles

Integrate Spikes TxM o(T)
- Spatial Loop Comparator T o(T)
- Integrate Spikes
Accumulator T o(T)
: Accumulation Total Cycles O(NT)

- Comparison

Fire the spike of neuron n at time-step t;

Map the post-synaptic neurons calculations
onto PEs in parallel and integrate spikes along
‘the time steps in serial.

TS -

nj

L

The accelerator processes
the spikes as follows:

1. integrate the spikes
at time step t;

2. accumulate the
integrated spike to the
membrane potentials

DESIGN
AUTOMATION

TS -

?i;g]

z-Egj

Existing dataflow in SNN accelerators

Soike Trai t=1 NEURON i The accelerator processes
ﬁgf_e_ Lal'}J_ & | P e spik the spikes as follows:
& 1% i Vinre . .
E] Integration {— Accumation} T J) @ 1.integrate the spikes
il I E!I A Ve (4] at time step t;
SR =] Chronological Dependence CD @® 2.accumulate the
T t=t+1 integrated spike to the

Vor o membrane potentials;
9 3. compare the current

Module Name # Modules # Cycles

PSUM = 0, T _Integrate Spkes | TxM o(T) membrane potential to
form=0to M- 1{ - Spatial Loop C t T . o e

0 PPI"I,t += TST ® Wm,n; - |ntegrate Sp|kes omparator O(T) the prescrlbed fl rlng

o } Accumulator T o(T) threshold
PSUM += PP, - Accumulation

€ ifpPsum> Threshold { :Comparison fotal Cycles O(NT)

(4] Fire the spike of neuron n at time-step t;

(a) Conventional Design (SpinalFlow, Eyeriss-based, etc.)

Map the post-synaptic neurons calculations

DESIGN

onto PEs in parallel and integrate spikes along AUTOMATION

‘the time steps in serial.

Existing dataflow in SNN accelerators ;

_ _ t=1 -
Spike Train @ NEURON i
i _.'_ T L J - 1 H
o111 Accumulation| Vire SIEba sl g
2 " Integratm&l > _
Q 9 Vme 9
E F 3 =
= Chronological Dependence CD
T t=t+1
for t=0t0T-1{ - Temporal Loop Module Name # Modules # Cycles
forn=0toN—-1/{ - Meuron Loop (PE) -
PSUM = 0 Integrate Spikes TxM o(T)
form=0toM—-1{ - Spatial Loop Comparator T O(T)
@ pp,+=TS,xW,, - Integrate Spikes
} ’ Accumulator T o(T)
PSUM +=PP,; - Accumulation Total C
g - i ycles
€) ifPSUM > Threshold { : Comparison O(N T)
(4] Fire the spike of neuron n at time-step t;
}
}
}

(a) Conventional Design (SpinalFlow, Eyeriss-based, etc.)

Map the post-synaptic neurons calculations
onto PEs in parallel and integrate spikes along

the time steps in serial.

TS -

7&?}

z-EEL

The accelerator processes the
spikes as follows:

1. integrate the spikes at
time step t;

2. accumulate the
integrated spike to the
membrane potentials;

3. compare the current
membrane potential to
the prescribed firing
threshold;

4. fire the output spike at
time step t and reset the
membrane potential if the
potential exceeds the
threshed.

O L\ DESIGN
59 AUTOMATION

Existing dataflow in SNN accelerators

#

pE

]

[

1
1
}

2=

==

_ _ t=1 -
Spike Train NEURON |
EA R HE ingle Spik
S e e Accumulation| Vire o'ngle Spike
2 , Integratm&l >
Q 9 Vme o
E 3 -
= Chronological Dependence CD
T t=t+1
L L J L J
fort=0toT-1{ - Temporal Loop .
forn=0toN—-1/{ - Meuron Loop (PE) -
PSUM = 0 Integrate Spikes TxM o(T)
0 form = 010 M—-1{ - Spatial LDOP Comparator T O(T)
PP +=T5;x W, " Integrate Spikes
} ' Accumulator T o(T)
#) PSUM += PP, - Accumulation Total C
b : : ycles
€) if PSUM > Threshold { - Comparison < (NT)'
(4] Fire the spike of neuron n at time-step t; N’

neuron-level parallelism

(a) Conventional Design (SpinalFlow, Eyeriss-based, etc.)

The number of cycles required to perform an inference is at least

the number of time steps.
The parallelism of PE is limited by the number of neurons.

Limitations
® The accumulation of

membrane potential
depends on the
accumulated
membrane potential
of previous time
steps, making SNNs
require sequential
computation across
multiple time steps
of the spike train.

¢

» U T) AUTOMATION

:
i

Overview of Our SATO Dataflow ""Hﬁ

for t=0toT-1{ :Temporal Loop ~._
S

PSUM = 0; IR\
. forn=etoN-1{ :PElop - loop form =6 to M- 1{ : Spatial Loop
form=0toM-1{ : Spatial Loop interchange PPy += TSy X W, o : Partial Products
PP, ¢ += TSy X Wy 5 : Partial Products }
} }
PSUM += PP, i; : Accumulation {PP, ,} send to Adder Tree with Comparison;
if PSUM > Threshold { : Comparison / }
Fire the Spike of postsynaptic neuron n at loop
time-step}: t; peeling Dataflow change

}

Decouple the chronological dependence and parallelize the integration

of received spikes at each time step for boosting SNN efficiency.

L&) pESIGN
AUTOMATION
CONFERENCE

Overview of Our SATO Dataflow ;

NEURON i

binary
search | Spike Train

Q =)

Spike Train i‘—————————t11 -
ﬁ__JL______B——P| Integration l—,—:F L
(]
R s R B »l Integration
= _ | —
= : :
@ | |l —1| Integration
r L |_ _______

t4T

_JI () Spike Train Generation

Fire spike

form=0to M-1{
(A) PP, +=TS;x W, : Integrate Spikes
}

{PPi.} send to Binary Adder-Search Tree;
@ Generate the spike train of neuron n with the
binary search;

}

: Spatial Loop o

Module Name # Modules # Cycles

Integrate Spikes TxM 0(1)
Binary Adder-
Search Tree 1 0(log T)
Total Cycles O(N log T)

TS -

7&?}

s

SATO processes the
spikes as follows:

@ A.map the
integration of spikes
of all time steps on
PEs without
accumulating
membrane potential

Expand the neuron-level parallelism to

additional temporal-level parallelism.

DESIGN
AUTOMATION

— —— — — — — — — — —

=1
~+
0
oq
=
Q
=
o
-
~+
— H =
[N
Yy

» Integration

Spike Train
****** ™
(0 IS P S
o
= |
=T T Tr
T Bl Sl T
£ . '
= |
1] |
[_\ M
(NN i ph 2 1
v v |

» Integration

Fire spike

=

() Spike Train Generation

Spike Train

forn=0to N—-1{
fort=0toT—-1/{
form=0toM-1{

}

}
{PPi.} send to Binary

@ Generate the spike train
binary search;

}

Q PPt,n += TS| X Wm,n ,

: Neuron Loop
: Temporal Loop (PE)

: Spatial Loop

: Integrate Spikes

Adder-Search Tree;
of neuron n with the

Module Name # Modules # Cycles
Integrate Spikes TxM 0(1)
Binary Adder-
Search Tree 1 O(log T)
Total Cycles O(N log T)

SATO processes the spikes
as follows:

® B. perform spike train
generation in a PE array,
we orderly feed the
integration results
located at each time step
to the adder tree and
combine them with the
binary search to
determine the time step
that the first fired spike.

¢

AUTOMATION

B =T

Overview of Our SATO Architecture ""‘Hﬁ

- - Performs the integration operation of received

f) Weight
E% spikes in parallel.
g a Input Buffer] .
< - Exploit both temporal-parallelism and neuron-
=T | —
n: —] [l [l agwm
o 1€ & level parallelism, increasing the scalability of
o O
Bt the accelerator,
2o
m [l Ll
N - Once PEs complete the integration of

e _"'“‘-._-
(Membrane voltage generated by each time step)

To PEs belong to the same group received spikes of each time step, the results
m out are fed to a novel binary adder-search tree to

a generate the spike train.

In temporal-encoded SNN, the spike train only has a single
spike, which can be realized by adopting binary search

L&) pESIGN
AUTOMATION
CONFERENCE

Overview of Our SATO Architecture ;

< Step 1: Construct the sparse matrix
PreM.
o 1 2 3 4 5 & 7 8 9

‘?\\ | l [' l i l #Non-Zero: 3

_____ ::!______:_-!___I—_—___—_—___::__::_______I—_—________EEE;ME{_J'J?LQ_}__._._--..l
I i i #Mon-Zero: 3

2 i OO e |
I I , I #MNon-Zero: 1

3 L RN

5 l . I l . | #Non-Zero: 3
----------------_-_!---I_-_---_-_---:;--:-_-------I-_-_---_-_-!---ELE;HE{-CL!'L?-} -------
6 I o D [| #MNon-Zero: 5
R By L L L Ll PreN=(35.6,7.8)
7 l l I . l [l #Mon-Zero: 6
_______________ e e L B B eren={013,4,79]
I [I:l |: Ll #MNon-Zero: 3
AN S O) 0) O (Y VSR Y |

TS -

nj

Step 2: Map the workload to PEs} < Step 3: Form PE Groups

Dpltimize workload

Optimize
locality
.

PE2 |Pren={4,5,8}U{3,4,8} h

={3,4,5,8} vy
IS=13,6]; #Non-Zero: 1+5=6] * /,
PE3 |PreN={3}U{3,5,6,7,8} L W
={3,5,6,7,8}

Overlap={0,1,3,7,9}

/ ;"\\\ PE Group 2
I Y PE2 PE3

d Overlap={3,5,8}

PreN: presynaptic neuron; TS: Time step; #Non-Zero: The number of received non-zero spikes

- Designs a workload dispatch strategy and
exploits the inherent sparsity of the spike

train and the data locality to optimize the

B

17 workload and overhead of the PEs.

[¢

Balancing workloads among PEs

DESIGN
AUTOMATION

B =T

Overview of Our SATO Architecture ""’Hﬁ
BSD design as follows:

Popcount

v

Step 1: load the input
by rows into the input
register and conduct
the count for each row
(i.e., counting the "1' at
each time steps)

Central Coﬁtroller

Bucket-Sort Based Dispatcher (BSD) is the

key to balance the workload among PEs
and maximize the data locality.

L&) pESIGN
AUTOMATION
CONFERENCE

B =T

Overview of Our SATO Architecture ""’Hﬁ
BSD design as follows:

Popcount

v

Step 2: map the
workload to PE based
on the number of
spikes processed by PE
and save results into
the PE register

Central Coﬁtroller

Bucket-Sort Based Dispatcher (BSD) is the

key to balance the workload among PEs

and maximize the data locality.

\&pEsian
AUTOMATION
CONFERENCE

B =T

Overview of Our SATO Architecture ""’Hﬁ
BSD design as follows:

Step 3: calculate the
number of extra spikes
Popcount
v

when inserting PE into
the group with logic
Central Controller AND operation and
generate a group PE
table stored in the

register
Bucket-Sort Based Dispatcher (BSD) is the
key to balance the workload among PEs
and maximize the data locality.
L b S A UTOMATION
i, 20 ® ¥ -CONFERENCE

Step 1: Construct the sparse matrix

> <

Step 2: Map the workload to PES'_ < Step 3: Form PE Groups

1 2 3 4 5 6 7 8 9
. #Mon-Zero: 3

Optimize workload

Optimize

PE2

PreN=1{4,5,8}U{3,4,8}
={3,4,5,8}

15 ={2,8}, #Non-Zero: 3+3=6|

PE3

TS =1{3,6}, #Non-Zero: 1+5=6

PreN={3}U{3,5,6,7,8}

PE Group 1

PE4 PE5

Overlap={0,1,3,7,9}

PE Group 2

#Mon-Zero: 3

..... !--!--------------____-_____l_____________Er_E;hE{_[L_lJ_}_______ ={3,5,6,7,8}

B] #Non-Zero: 5 _ : ~ i
----------------- = -------g--D--D---:.-------Er.E.HE{EJEuE.,LB_}__ . PE4 :i;i?g'zi'?;ng’“-ﬁ

EE 0 B B Fa-oisaze —

= ref=

__________________ e m e ———m e — e —— o — oo — oo oo LS LS | _ . I)
|:| #Non-Zero: 3 PES 15 —{?Eilllguq?; ;{El’ﬂ-ﬁ

--------------- =" ""'""‘""'-----T--------EI’_ELHE{BJQ'LS_}____-__I PI'E"—'[pdp=ty Tyl }

PE3

Overlap={3,5,8}

PreN: presynaptic neuron; TS: Time step; #Non-Zero: The number of received non-zero spikes

Step 3: calculate the number of extra spikes when
inserting PE into the group with logic AND operation and

generate a group PE table stored in the register

DESIGN

" ") AUTOMATION

In Leaf Node Infegration results from PEs .
Oya = @ Binary adder-search
oY 1 Leaf Node Sltrgg Cycle 0| Cycle 1|Cycle 2|Cycle 3 . .
in2 gy F Comparator / P U R NV I tree is responsible for
ol — 2 |1 |1 |1 |1 processing the results
D . 3" 1 1 1 1
o gy] S RV U R from the PE array and
. — mem ° e
Oy H} AdderTree A N N generating the spike
@ 1@_Vref Comparator) \ o) . ; . train.
o] th .
Oy —_ ~Finish=> " |1 |0 o |o 9 We can determine the
N | DFF Yes \Result > < < > . .
@’D Q Output Buffer Spike at 7" timestep pOSltlon Of d Umque
b ol spike in the spike train
(@) (b) by binary search.

(' DESICGN

! - ..-_‘_-':\\ | ¥ § =g=j§ L™ § L |

o ») AUTOMATION
qu 22 [o W

&

Experiment Results — Energy

Table 1: The characteristic of SNNs for verifying SATO.

Model Structure Coding Timestep DataSet Acc.
SNN-T [4] 784-340-10 Temporal 800 MNIST 97.9%
STiDi-BP [12] | 784-500-10 Temporal 600 MNIST 97.4%
- : _ SM+SR [15] VGG-7 Temporal 544 CIFAR-10 91.05%
08 [o . : [Global Buffer © DRAM [CORY SSTDP [11] VGG-7 Temporal 16 CIFAR-10 91.31%
04 b & 5 N B N B U H | TSC-SNN [8] VGG-16 Temporal 2480 ImageNet 69.96%
HINE RN DR LR R
SR 53|23 EP53|2883|2853 ® Compared to Eyeriss, S2N2 and
& & &) & . o o
ane | sioee | swex | ssior | rscomn SpinalFlow, SATO consumes 91.3% ,83.4%
o (a) Energy breakdown of different SNNs and 69.7% IeSS energy, respec.t'Ver.
a8 | 5.535 spl?ledup Jé;r B Performanced
i _ SpinalFlow wi "
gﬁ X % 3]F.)Etime steps 5L2,B><
---- _ speedup /{2
13 - e ‘::.:‘ [l " ':::-: i I E'::ﬁ.i
29 30elgszelgszelgezelgeze
) & & & &
SNN-T STiDi-BP SM+SR SSTDP TSC-SNN

(b) Performance of different SNNs

[V AP 2)
DESIGN
- | ¥ § =g=j§ L™ § L |
N .
Y
; e
e

Experiment Results — Performance

Table 1: The characteristic of SNNs for verifying SATO.

Model Structure Coding Timestep DataSet Acc.
SNN-T [4] | 784-340-10 Temporal 300 MNIST 97.9%
STiDi-BP [12] | 784-500-10 Temporal 600 MNIST 97.4%
1 : . SM+SR [15] VGG-7 Temporal 544 CIFAR-10 91.05%
08 Pl : (& Global Buffer & DRAM [COR SSTDP [11] VGG-7 Temporal 16 CIFAR-10 91.31%
os [B g & B N B i g H | TSC-SNN [8] | VGG-16 Temporal 2480 ImageNet 69.96%
02 4 B & i I i 1 N N 4 N B 2
M K H B l o I = % = H H 2 I I| %
0
§23p218232|823¢2/223L/82 3¢ .
$O 553|305 3953|2055|3953 Compared to Eyeriss, S2N2 and
) @ 7] @) .))
ane | sioee | swex | ssior | rscomn SpinalFlow, SATO consumes 91.3% ,83.4%
o (a) Energy breakdown of different SNNs and 69.7% IeSS energy, respectively.
48 t 5.3x speedup over|[8 Performanced . .
ol 16 tme steps_123% i Compared with Eyeriss, S2N2, and
24 ’;j ;‘ ;3_,3‘ --E-_._ speedup / F) Y
12 | ;' i : & 5 . .
0 = b 18 SpinalFlow, SATO achieves an average
g2 z2olgezeflaezeflsezefsezo
2O L3I0 3E055(2055|2853 30.9 X, 22.1 X, and 6.4 X performance
g o o o o improvement
SHM-T STiDi-BP SM+SR SSTDP TSC-SMM
(b) Performance of different SNNs
?j - _ »AUTOMATION
i ¢
il

El

L

Experiment Results — PEs ;

30 0.6

ESATO FFa7a asatTme Y ____
5 | 0.5 } N
=ESpinalFlow)] e
20 | 7 0.4 |

aaaaa

B SpinalFlow

15 F

Speed up

s
aaaaa

10

5 7 o o — 0.1 WA

52 1024 128 256 52 1024
The number of PEs The number of PEs

The number of time steps is generally much greater than
128, so the number of PEs is related to performance gains
and energy consumption.

As the number of PEs increases, we calculate more time
steps in parallel to obtain more performance benefits.

O L\ DESIGN
59 AUTOMATION

El

L

Experiment Results — time steps

8 92% 0.5 84%
(a) i A (b)
i A A
T 0.4 90%
g, 88% E - n:p-
- o' P03 O
@ 4 S 2 86% =
3' SpEEd up 0 L 02 F ' 0
7] 840, < : === Energy <
5 | —&— Accuracy —i— Accuracy 809,
0.1
':] i L i i m% I:I i i L L ?Bn,l'llﬂ-
4 8 16 32 B4 4 8 16 32 64
The number of time steps The number of time steps

As the number of time steps increases, the accuracy of the
SNN increases, and the performance gains of SATO are also
improving.

® For the SNN with 16 time steps, compared to SpinaFlow,
SATO consumes nearly 70% less energy.

S L\ DESIGN

Conclusion ;

El

L

® A novel redesign of the SNN dataflow

* Decouple the chronological dependence

* Parallelize the integration of received spikes at each time step

® An efficient SNN architecture

* workload allocation strategy

* Bucket-Sort Based Dispatcher

* Binary adder-search tree

® Keep high energy efficiency while gaining large performance

improvement

e DESIGN
. »AUTOMATION

Thank you !

SATO: Spiking Neural Network Acceleration via
Temporal-Oriented Dataflow and Architecture

Fangxin Liu (Speaker)
Wenbo Zhao, Zongwu Wang, Yongbiao Chen, Tao Yang, Zhezhi He, Xiaokang Yang and Li Jiang*
Shanghai Jiao Tong University

AUTOMATION

G SHANGHAI JIAO TONG UNIVERSITY

	幻灯片编号 1
	SATO: Spiking Neural Network Acceleration via Temporal-Oriented Dataflow and Architecture
	Outline
	DNN Applications in Edge Devices
	Spiking Neural Network
	The Types of SNNs
	What Determines SNN Accelerator Efficiency
	Existing dataflow in SNN accelerators
	Existing dataflow in SNN accelerators
	Existing dataflow in SNN accelerators
	Existing dataflow in SNN accelerators
	Existing dataflow in SNN accelerators
	Overview of Our SATO Dataflow
	Overview of Our SATO Dataflow
	Overview of Our SATO Dataflow
	Overview of Our SATO Architecture
	Overview of Our SATO Architecture
	Overview of Our SATO Architecture
	Overview of Our SATO Architecture
	Overview of Our SATO Architecture
	Overview of Our SATO Architecture
	Overview of Our SATO Architecture
	Experiment Results — Energy
	Experiment Results — Performance
	Experiment Results — PEs
	Experiment Results — time steps
	Conclusion
	幻灯片编号 28

