

SATO: Spiking Neural Network Acceleration
via Temporal-Oriented Dataflow and

Architecture
Fangxin Liu (Speaker)
Wenbo Zhao, Zongwu Wang, Yongbiao Chen, Tao Yang, Zhezhi
He, Xiaokang Yang and Li Jiang*
Shanghai Jiao Tong University

3

Outline
• Background and motivation

• Proposal: Spiking Neural Network Acceleration via Temporal-Oriented

Dataflow and Architecture

• Design and implementation details

• Experiment results

• Conclusion

4

DNN Applications in Edge Devices

Translation

DNN

Image
DNN

Speech
DNN

Language
DNN

Diverse DNN models and
use cases on various

devices

LatencyEnergy

Challenges

Automatic Drive

Face Recognition

Speech Recognition

5

Spiking Neural Network
SNN:
- Increasing the information density due

to the spike train over the time window

- Sparse additions

Spiking NNFeatures

- SNNs iterate over all the neurons for each time step
- Accumulating spikes over multiple time steps leads to more

operations
- A larger number of time steps represent the longer

network latency.
Latency

Energy
Requirement of repeated processing spike over the time window

6

The Types of SNNs

Recent studies have shown temporal-encoded SNNs
with their inherent higher sparsity and ability to

encode temporal information in inputs can match the
accuracy of an ANN, even on large-scale datasets.

 Rate-encoded SNN:

• converts an input pixel value

into the spike train consist of

multiple spikes.

Temporal-encoded SNN:

• converts an input pixel value

into the spike train consist of

the single spike.

7

What Determines SNN Accelerator Efficiency

Mapping (Dataflow)

HW Resources
Latency

Energy

SNN Model

PE

PE

PE

PE

PE

PE

PE

PE

PE

SNN

8

Existing dataflow in SNN accelerators

Map the post-synaptic neurons calculations
onto PEs in parallel and integrate spikes along

the time steps in serial.

The accelerator
processes the spikes as
follows:

1. integrate the spikes
at time step t;

9

Existing dataflow in SNN accelerators

Map the post-synaptic neurons calculations
onto PEs in parallel and integrate spikes along

the time steps in serial.

The accelerator processes
the spikes as follows:

1. integrate the spikes
at time step t;
2. accumulate the
integrated spike to the
membrane potentials

10

Existing dataflow in SNN accelerators

Map the post-synaptic neurons calculations
onto PEs in parallel and integrate spikes along

the time steps in serial.

The accelerator processes
the spikes as follows:

1. integrate the spikes
at time step t;
2. accumulate the
integrated spike to the
membrane potentials;
3. compare the current
membrane potential to
the prescribed firing
threshold

11

Existing dataflow in SNN accelerators

Map the post-synaptic neurons calculations
onto PEs in parallel and integrate spikes along

the time steps in serial.

The accelerator processes the
spikes as follows:

1. integrate the spikes at
time step t;
2. accumulate the
integrated spike to the
membrane potentials;
3. compare the current
membrane potential to
the prescribed firing
threshold;
4. fire the output spike at
time step t and reset the
membrane potential if the
potential exceeds the
threshed.

12

Existing dataflow in SNN accelerators
Limitations

The accumulation of
membrane potential
depends on the
accumulated
membrane potential
of previous time
steps, making SNNs
require sequential
computation across
multiple time steps
of the spike train.

- The number of cycles required to perform an inference is at least
the number of time steps.

- The parallelism of PE is limited by the number of neurons.

neuron-level parallelism

13

Overview of Our SATO Dataflow

Decouple the chronological dependence and parallelize the integration
of received spikes at each time step for boosting SNN efficiency.

for t = 0 to T – 1 { : Temporal Loop
PSUM = 0;
for n = 0 to N – 1 { : PE Loop

for m = 0 to M – 1 { : Spatial Loop
PPn,t += TSt × Wm,n; : Partial Products

}
PSUM += PPn,t; : Accumulation
if PSUM > Threshold { : Comparison

Fire the Spike of postsynaptic neuron n at
time-step t;

}
}

}

loop
peeling

loop
interchange

for n = 0 to N – 1 { : Spatial Loop
for t = 0 to T – 1 { : PE Loop

for m = 0 to M – 1 { : Spatial Loop
PPt,n += TSt × Wm,n : Partial Products

}
}
{PPt,n} send to Adder Tree with Comparison;

}

Dataflow change

14

Overview of Our SATO Dataflow
SATO processes the
spikes as follows:

A. map the
integration of spikes
of all time steps on
PEs without
accumulating
membrane potential

Expand the neuron-level parallelism to
additional temporal-level parallelism.

15

Overview of Our SATO Dataflow
SATO processes the spikes
as follows:

B. perform spike train
generation in a PE array,
we orderly feed the
integration results
located at each time step
to the adder tree and
combine them with the
binary search to
determine the time step
that the first fired spike.

16

Overview of Our SATO Architecture

- Performs the integration operation of received

spikes in parallel.

- Exploit both temporal-parallelism and neuron-

level parallelism, increasing the scalability of

the accelerator,

- Once PEs complete the integration of

received spikes of each time step, the results

are fed to a novel binary adder-search tree to

generate the spike train.

In temporal-encoded SNN, the spike train only has a single
spike, which can be realized by adopting binary search

17

Overview of Our SATO Architecture

Balancing workloads among PEs- Designs a workload dispatch strategy and

exploits the inherent sparsity of the spike

train and the data locality to optimize the

workload and overhead of the PEs.

18

Overview of Our SATO Architecture
BSD design as follows:

Step 1: load the input
by rows into the input
register and conduct
the count for each row
(i.e., counting the `1' at
each time steps)

Bucket-Sort Based Dispatcher (BSD) is the
key to balance the workload among PEs

and maximize the data locality.

19

Overview of Our SATO Architecture
BSD design as follows:

Step 2: map the
workload to PE based
on the number of
spikes processed by PE
and save results into
the PE register

Bucket-Sort Based Dispatcher (BSD) is the
key to balance the workload among PEs

and maximize the data locality.

20

Overview of Our SATO Architecture
BSD design as follows:

Step 3: calculate the
number of extra spikes
when inserting PE into
the group with logic
AND operation and
generate a group PE
table stored in the
register

Bucket-Sort Based Dispatcher (BSD) is the
key to balance the workload among PEs

and maximize the data locality.

21

Overview of Our SATO Architecture

- Step 3: calculate the number of extra spikes when

inserting PE into the group with logic AND operation and

generate a group PE table stored in the register

22

Overview of Our SATO Architecture

Binary adder-search
tree is responsible for
processing the results
from the PE array and
generating the spike
train.
We can determine the
position of a unique
spike in the spike train
by binary search.

23

Experiment Results — Energy

Compared to Eyeriss, S2N2 and
SpinalFlow, SATO consumes 91.3% ,83.4%
and 69.7% less energy, respectively.

24

Experiment Results — Performance

Compared to Eyeriss, S2N2 and
SpinalFlow, SATO consumes 91.3% ,83.4%
and 69.7% less energy, respectively.
Compared with Eyeriss, S2N2, and
SpinalFlow, SATO achieves an average
30.9×, 22.1×, and 6.4× performance
improvement

25

Experiment Results — PEs

The number of time steps is generally much greater than
128, so the number of PEs is related to performance gains
and energy consumption.
As the number of PEs increases, we calculate more time
steps in parallel to obtain more performance benefits.

26

Experiment Results — time steps

As the number of time steps increases, the accuracy of the
SNN increases, and the performance gains of SATO are also
improving.
For the SNN with 16 time steps, compared to SpinaFlow,
SATO consumes nearly 70% less energy.

27

Conclusion

A novel redesign of the SNN dataflow

• Decouple the chronological dependence

• Parallelize the integration of received spikes at each time step

An efficient SNN architecture

• workload allocation strategy

• Bucket-Sort Based Dispatcher

• Binary adder-search tree

Keep high energy efficiency while gaining large performance

improvement

Thank you !
SATO: Spiking Neural Network Acceleration via
Temporal-Oriented Dataflow and Architecture

Fangxin Liu (Speaker)
Wenbo Zhao, Zongwu Wang, Yongbiao Chen, Tao Yang, Zhezhi He, Xiaokang Yang and Li Jiang*
Shanghai Jiao Tong University

	幻灯片编号 1
	SATO: Spiking Neural Network Acceleration via Temporal-Oriented Dataflow and Architecture
	Outline
	DNN Applications in Edge Devices
	Spiking Neural Network
	The Types of SNNs
	What Determines SNN Accelerator Efficiency
	Existing dataflow in SNN accelerators
	Existing dataflow in SNN accelerators
	Existing dataflow in SNN accelerators
	Existing dataflow in SNN accelerators
	Existing dataflow in SNN accelerators
	Overview of Our SATO Dataflow
	Overview of Our SATO Dataflow
	Overview of Our SATO Dataflow
	Overview of Our SATO Architecture
	Overview of Our SATO Architecture
	Overview of Our SATO Architecture
	Overview of Our SATO Architecture
	Overview of Our SATO Architecture
	Overview of Our SATO Architecture
	Overview of Our SATO Architecture
	Experiment Results — Energy
	Experiment Results — Performance
	Experiment Results — PEs
	Experiment Results — time steps
	Conclusion
	幻灯片编号 28

