
DTQAtten: Leveraging Dynamic Token-based
Quantization for Efficient Attention Architecture

Tao Yang1, Dongyue Li1, Zhuoran Song1, Yilong Zhao1, Fangxin Liu1, Zongwu Wang1, Zhezhi He1 and Li Jiang1,2,3
1Shanghai Jiao Tong University, Shanghai, China, 2Shanghai Qi Zhi Institute, Shanghai, China

3MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

Abstract—Models based on the attention mechanism, i.e. trans-
formers, have shown extraordinary performance in Natural Lan-
guage Processing (NLP) tasks. However, their memory footprint,
inference latency, and power consumption are still prohibitive
for efficient inference at edge devices, even at data centers. To
tackle this issue, we present an algorithm-architecture co-design
with dynamic and mixed-precision quantization, DTQAtten. We
present empirically that the tolerance to the noise varies from
token to token in attention-based NLP models. This finding
leads us to quantize different tokens with mixed levels of bits.
Thus, we design a compression framework that (i) dynamically
quantizes tokens while they are forwarded in the models and
(ii) jointly determines the ratio of each precision. Moreover, due
to the dynamic mixed-precision tokens caused by our frame-
work, previous matrix-multiplication accelerators (e.g. systolic
array) cannot effectively exploit the benefit of the compressed
attention computation. We thus design our accelerator with the
variable-speed systolic array (VSSA) and propose an effective
optimization strategy to alleviate the pipeline-stall problem in
VSSA without hardware overhead. We conduct experiments with
existing attention-based NLP models, including BERT and GPT-
2 on various language tasks. Our results show that DTQAtten
outperforms the previous neural network accelerator Eyeriss by
13.12× in terms of speedup and 3.8× in terms of energy-saving.
Compared with the state-of-the-art attention accelerator SpAtten,
our DTQAtten achieves at least 2.65× speedup and 3.38× energy
efficiency improvement.

Index Terms—transformers; domain-specific accelerator; dy-
namic quantization; algorithm-architecture co-design

I. INTRODUCTION

Natural Language Processing (NLP) has witnessed rapid
progress in recent years driven by the attention mechanism.
Attention-based models such as Transformers [1], BERT [2],
and GPT-2 [3] provide significant performance improvements
over convolutional neural networks and recurrent neural net-
works. Nevertheless, the high accuracy is at the cost of the
increasing demand for computation power.

Quantization methods have been effective techniques for
reducing the inference workload in deep neural networks [4],
[5]. Nowadays, several works have introduced quantization
in attention-based NLP models. Q-BERT [6] proposes to use
group-wise Hessian information to quantize BERT models to
low precision. I-BERT [7] quantizes all the embeddings and

This work was partially supported by the National Key Research and De-
velopment Program of China (2018YFB1403400), National Natural Science
Foundation of China(Grant No. 61834006). The author Tao Yang is supported
by Wu Wen Jun Honorary Doctoral Scholarship, AI Institute, Shanghai Jiao
Tong University. Corresponding author: Li Jiang.

executes matrix multiplication (MM) with INT8 multiplica-
tion and INT32 accumulation, which is easier for hardware
implementation. SpAtten [8] employs both the pruning and
quantization methods on BERT [2] and GPT-2 [3] models. The
authors introduce applying both token-wise pruning and layer-
wise quantization jointly in a model. However, there are two
drawbacks in current quantization methods for attention-based
NLP models: (i) the quantization granularities are coarse-
grained to achieve sufficient computational cost reduction;
(ii) quantization and pruning are generally performed as two
independent steps, which makes it difficult to search the global
optimal solution for model compression with an acceptable
accuracy [4].

To address these issues, we first show empirically that
tokens in attention-based NLP models show different toler-
ance to noise. Improper quantization on these tokens might
seriously deteriorate the overall performance. Specifically, to
obtain a high compression ratio with preserved accuracy, we
can relax the quantization strength for more robust tokens,
while quantization for less tolerant tokens should be restricted.
Based on the finding, we propose a fine-grained token-based
mixed-precision quantization framework for attention-based
NLP models. Our quantization method dynamically tracks the
token tolerance and adjusts the precision of token feature
vectors, i.e. Query (Q), Key (K), Value (V) vectors in each
block of attention-based NLP models. Moreover, we treat
pruning as a corner case of quantization where the tokens
are quantized to 0-bit. Thus, quantization and pruning are
integrated as a unified optimization problem, and we jointly
search for the global solution of model compression.

The mixed-precision tokens resulting from our quantization
framework challenge the efficiency of existing hardware. It
is hard for existing architectures to capture the dynamically
distributed low-precision tokens and effectively convert these
low-precision calculations into performance improvement. We
develop a hardware architecture based on variable-speed sys-
tolic array (VSSA) [5] for our quantization method and
propose a dedicated optimization strategy to solve the low
PE efficiency problem in VSSA by reordering and clustering
the tokens with the same precision. The optimization strategy
ensures that most of the calculation iterations in VSSA only
involve a pair of precisions. Thus, no pipeline stall occurs in
these iterations, which ensures the high efficiency of comput-
ing resources.

FC
 f

o
r

Q
, K

, V

Q
 x

 K

So
ft

m
ax

A
tt

en
ti

o
n

 P
ro

b
 x

 V

FF
N

T

N×

b
lo

ck
_

in

Q
: L

 x
D

, K
: L

 x
D

, V
: L

 x
D

a
tt

en
ti

o
n

_i
n

L
xL

L
xL

L
xD

a
tt

en
ti

o
n

_o
u

t

b
lo

ck
_

o
u

t

Block

a
tt

en
ti

o
n

_p
ro

b

4-bit MAC

H

FWP
H

<<4

4-bit MAC

L

FWP
H

4-bit MAC

H

FWP
L

<<4

4-bit MAC

L

FWP
L

Cycle t Cycle t+1

Cycle t+2 Cycle t+3

CtrlCtrl

Ctrl Ctrl

(a)

To
ke

n
 e

m
b

ed
in

g
s

(b)

Fig. 1. (a) An attention-based block in NLP models. (b) PE of 4-bit MAC
unit can perform 8bit-8bit MAC mode taking four cycles.

In summary, we present an algorithm-architecture co-design
for attention-based NLP models, namely DTQAtten. Our con-
tributions are threefold.
• We propose a token-based mixed-quantization framework

for attention-based NLP models. This framework dynami-
cally decides quantization precision levels for tokens and
jointly search for the ratio of each precision.

• We design a hardware architecture to support the inference
of our quantization framework for attention-based NLP
models. We propose a lightweight optimization strategy to
reduce pipeline stalls caused by the dynamically distributed
mixed-precision tokens.

• We validate the effectiveness of our design through extensive
experiments on NLP tasks. Results show that DTQAtten
achieves 7.94×, 4.41×, 2.65× speedup improvement upon
the state-of-the-art attention-based accelerators MNNFast
[9], A3 [10], and SpAtten [8]. Our design also outperforms
these designs in terms of area cost and energy efficiency.

II. BACKGROUND

A. Attention-Based NLP Models

The recent attention-based models [11], pre-trained from
large unlabeled data (e.g., BERT [2] and the GPT family
[1]) have achieved a significant accuracy improvement on a
wide range of NLP tasks. Although the connectivity among
layers and the organizations of these networks are different,
they are all based on the same basic attention-based block.
Fig. 1(a) shows the architecture of the block. The inputs of
the block are the embeddings of the tokens. In the block,
embeddings are linearly transformed to Query (Q), Key (K)
and Value (V) vectors. Then, Q, K, V vectors are processed by
the attention layer. In attention layer, the attention probabili-
ties (attention prob) are produced by employing softmax on
Q ×KT . The attention output (attention out) is obtained by
multiplying the attention prob with V . A residual layer adds
the attention out with embeddings and execute normalization.
Furthermore, a Feed-Forward Network (FFN) containing three
Fully-Connected (FC) layers is applied. Finally, another resid-
ual operation is conducted and outputs block out.
B. Neural Networks Pruning and Quantization

Pruning and quantization are previously introduced in com-
pressing convolutional neural networks. Due to the prevail-
ing redundancy in model weights, removing unimportant
weights [4] or representing activations and weights with
low bit precision [5] can reduce computing overhead while

maintaining high accuracy performance. In attention-based
NLP models, pruning and quantization are executed on ac-
tivation vectors (including Q, K, and V vectors), for they
take a large amount of the memory and consume most of
the computational overhead. For pruning on attention-based
NLP models, MnnFast [9] prunes Value (V) vector locally
in attention computation. A3 [10] first sorts each dimension
of the key vectors among all keys and uses a predefined
ratio of elements in the keys to multiply with queries to get
partial attention scores. For quantization on attention-based
NLP models, Fully 8-bit [12] and I-BERT [7] propose 8-
bit quantization schemes for BERT. Q-BERT [6] quantizes
activation vectors with a group granularity using second-
order Hessian information. Only a few works concerning both
pruning and quantization to compress attention-based NLP
models, SpAtten [8] first prunes the unimportant tokens in
the sentence and then implements a layer-wise quantization
on the model. However, the quantization for attention-based
NLP models in these works are still coarse-grained [6]–[8],
[12] and conducted separately from pruning [8].

C. Variable-speed Systolic Arrays

Systolic array is nowadays a popular architecture used in
various AI accelerators (e.g. Google TPU [13] and Gem-
mini [14]) to accelerate MM. It features by friendliness for
very large scale integration (VLSI) with high speed and low
cost. However, traditional systolic array can only work with
“one” precision. DRQ [5] proposes variable-speed systolic
array (VSSA) to support multi-precision (4bit and 8bit) con-
volution. 4-bit MAC unit is used as basic PE in VSSA. As
shown in Fig. 1(b), each PE has two registers W and F
holding a weight value and a feature value, respectively. A
register P stores the partial result. Each PE can perform 8bit-
8bit MAC mode by taking four cycles in a timing-multiplexing
manner. In each cycle, the PE extracts the higher 4 bits (H)
or lower 4 bit (L) of the weight value and the feature value
from W and F, then choose whether to shift the MAC result
accordingly and store the result into the P register. For the
strict dataflow requirement in systolic array architecture, the
pipeline stall occurs when the adjacent PEs execute MACs
with different precisions. The stall cases will be discussed
in detail in Section IV-B. The high stall ratio incurs the low
computational efficiency of VSSA.

III. DYNAMIC TOKEN-BASED QUANTIZATION

A. Different Tolerance to Noise of Tokens

In this section, we show empirically that the tokens with
different importance scores show different tolerance to noise.
We take a widely used task (qnli) from the GLUE [1] bench-
mark on BERT-Base [2] as a case study. In attention layer,
relevances between pairs of tokens are measured by Q×KT

and then normalized by the softmax function [11]. Naturally,
the more the token is relevant to others, the more important it
is. Thus we can calculate an importance score for each token
by accumulating the soft-maxed probabilities across all tokens
as shown in Fig. 2(a).

10.10.01

0.8

1.0

0.6

0.4

0.2

0.0

NAI

A
c
c
u
ra

c
y

(b)(a)

0.001 10
u

NAU NAM PU

Li

Bai

was

famous

in

Tang

dynasty

L
i

B
a
i

w
a
s

fa
m

o
u
s

in T
a

n
g

d
y
n
a

s
ty

0.2 0.1 0.1

0.1

0.3 0.1

0.2

0.3

0.5 0.40.1

0.5

0 0.2 0.4 0.2 0.10

0.2 0.1 000.1 0.1

0.1 0 0 0.7 0.1 0.1

0.1

0

0.1 0.4 0 0.1 0

0 000

0.1 0.5 0 0.1 00.1

0.1 0.1

1.6 0.4 0.7 2.8 0.2 1.1 0.2

A
c
c
u
m

u
la

te
 v

e
rt

ic
a
lly

M
o
re

 i
m

p
o
rt

a
n
t

sums to 1

10.10.01

0.8

1.0

0.6

0.4

0.2

0.0

NAI

A
c
c
u
ra

c
y

(b)(a)

0.001 10
u (noise magnitude)

NAU NAM PU

Li

Bai

was

famous

in

Tang

dynasty

L
i

B
a
i

w
a
s

fa
m

o
u
s

in T
a

n
g

d
y
n
a

s
ty

0.2 0.1 0.1

0.1

0.3 0.1

0.2

0.3

0.5 0.40.1

0.5

0 0.2 0.4 0.2 0.10

0.2 0.1 000.1 0.1

0.1 0 0 0.7 0.1 0.1

0.1

0

0.1 0.4 0 0.1 0

0 000

0.1 0.5 0 0.1 00.1

0.1 0.1

1.6 0.4 0.7 2.8 0.2 1.1 0.2

A
c
c
u
m

u
la

te
 v

e
rt

ic
a
lly

M
o
re

 i
m

p
o
rt

a
n
t

A set of

attention probability

10.10.01

0.8

1.0

0.6

0.4

0.2

0.0

NAI

A
c
c
u
ra

c
y

(b)(a)

0.001 10
u (noise magnitude)

NAU NAM PU

Li

Bai

was

famous

in

Tang

dynasty

L
i

B
a
i

w
a
s

fa
m

o
u
s

in T
a

n
g

d
y
n
a

s
ty

0.2 0.1 0.1

0.1

0.3 0.1

0.2

0.3

0.5 0.40.1

0.5

0 0.2 0.4 0.2 0.10

0.2 0.1 000.1 0.1

0.1 0 0 0.7 0.1 0.1

0.1

0

0.1 0.4 0 0.1 0

0 000

0.1 0.5 0 0.1 00.1

0.1 0.1

1.6 0.4 0.7 2.8 0.2 1.1 0.2

A
c
c
u
m

u
la

te

S
tr

o
n
g
e
r

re
le

v
a
n
c
e

A set of

softmax results

Importance socres

Fig. 2. (a) Attention probabilities are summed over each column to get
importance scores. (b) BERT-Base accuracy on task qnli [1] with noise added
on tokens with different importance scores.

With the importance scores, we sort the tokens by their
importance scores and classify the tokens of each layer into
three segments using the threshold ratio of 15% and 85%.
In the three segments, segment 0 contains the most important
15% tokens. Segment 1 contains the middle 70% and segment
2 contains the most unimportant 15% tokens. We then add
Gaussian noise to the tokens in different segments and measure
the accuracy of BERT with the noise magnitude u. The results
are shown in Fig. 2 (b), where “NAI”, “NAM”, “NAU” mean
only add noise to segments 0, 1 and 2, respectively. We can
observe that “NAI” curve decreases rapidly with the growth
of u, while the accuracy of “NAU” remains stable while
increasing u. The results indicate that (i) tokens in different
segments show varied tolerance to noise, and (ii) token’s
tolerance to noise is inversely proportional to its importance
degree. Furthermore, in order to explore the noise tolerance
boundary of the unimportant tokens, we add an experiment to
prune the tokens in segment 2 directly shown as “PU” in Fig. 2
(b). The accuracy of “PU” is 90.1% which is comparable to
the accuracy of baseline 90.3%. The results further indicate
that (iii) pruning unimportant tokens has a negligible effect
on the model accuracy. Given the above findings, achieving
a high compression ratio with maintained accuracy requires
restricting the quantization impact (equivalent to noise) for
the important tokens and relaxing the quantization for the
unimportant tokens.

B. Dynamic Token-based Quantization Algorithm Overview

Based on the experimental findings, we propose our token-
based mixed-quantization algorithm. We show the overall logic
of our algorithm in Fig. 3. We use attention probabilities to
calculate the importance score of each input token dynamically
in each attention block. We then use a two-level top-K engine
to split the tokens into three segmentation according to their
importance scores. The first top-k engine selects the top k0
tokens to remain in the next block and prune other tokens.
Then, for the top k0 tokens, we use the second top-k engine
to further select the top k1 tokens to be quantized with high-
precision. The other (k0 − k1) tokens are quantized with low-
precision. In this paper, we define 8-bit as high-precision,
which has been proved to be sufficient for typical attention-
based NLP models [6], [8], [12], [15]. We define 4-bit as
low-precision. Particularly, the pruned tokens in the first top-k
engine are treated as 0-bit tokens, making our method a unified
quantization algorithm.

1
0

 t
o

ke
n

s

5 heads

Q
K

V

Q
K

V

Q
K

V
Attention

Accumulate
Importance Scores

Top-k0

Q K V

Attention_prob

Top-k1

Remained tokens (not 0-bit)

8-bit tokens & 4-bit tokens

Attention

Accumulate
Importance Scores

Top-k0

Q K V

Top-k1

FFN

FC

FFN

FC

Pruned QKV (0-bit) 4-bit QKV 8-bit QKV

Importance scores

First block Second block

1
0

 t
o

ke
n

s

5 heads

Q
K

V

Q
K

V

Q
K

V
Attention

Accumulate
Importance Scores

Top-k0

Q K V

Attention_prob

Top-k1

Remained tokens (not 0-bit)

8-bit tokens & 4-bit tokens

Attention

Accumulate
Importance Scores

Top-k0

Q K V

Top-k1

FFN

FC

FFN

FC

Pruned QKV (0-bit) 4-bit QKV 8-bit QKV

Importance scores

First block Second block

Fig. 3. Dynamic token-based quantization: tokens are quantized to 8-bit, 4-bit
and 0-bit in the inference according to their important scores.

C. Design Space Exploration

In our proposed quantization method, the tokens need to
be divided into 0-bit, 4-bit and 8-bit parts according to their
importance scores in each layer. The ratio of each part in
each layer forms a large design space. Using conventional
search methods such as grid search will cause unbearable
time consumption. Thus, we apply a Bayesian optimization
method [16] to execute the search process. The targeted opti-
mization problem is constructed concerning both the accuracy
and the computational performance, which is formalized as:

minimize L (R) = Len + λ ∗ Lops (1)

where R is the hyper-parameter vector composed of the ratio
factors in each layer, Len is the cross-entropy loss, and Lops is
the penalty term for computational overhead. λ is a coefficient
to balance the accuracy and performance. The Lops we used
in our paper can be formulated as:

Lops =
∑
i

BOPs(r0b i, r4b i, r8b i)/
∑
i

FLOP (Li) (2)

Where r0b i, r4b i and r8b i are the ratios of 0-bit part, 4-bit
part and 8-bit part of layer Li in quantized model. BOPs can
calculate the number of bit operations (BOPs) [17] according
to these ratios. FLOP (Li) denotes the number of float point
operations (OPs) of layer Li in the original model. The final
Lops means the average bit operation number for each OP.

IV. ARCHITECTURE DESIGN

A. Architecture Overview

In my opinion, Li Bai was the most outstanding poet of Tang dynasty.

BERT Block1 (100% 8bit Computation & 100% memory Access)

15 Tokens 8-bit

In my opinion, Li Bai was the most outstanding poet of Tang dynasty.

BERT Block2 (27% 8bit / 33% 4bit Computation & 43% memory Access)

4 Tokens 8-bit 5 Tokens 4-bit

In my opinion, Li Bai was the most outstanding poet of Tang dynasty.

BERT Block3 (7% 8bit / 14% 4bit Computation & 14% memory Access)

1 Tokens 8-bit 2 Tokens 4-bit

Sentiment Classification: Positive✔

0 Tokens 4-bit

xxx 8-bit xxx 4-bitxxx Pruned

Token Embedding

FC for Q, K, V

Q x K

Softmax

Attention Prob x V

FFN

Block n

Classification

Embed

FC

Q x K

Softmax

Prob x V

FFN

Block n

LM Head

Embed

FC

Q x K

Softmax

Prob x V

FFN

Block n

LM Head

T

LM Head

T

A
tt

en
ti

o
n

“It” “is” “very” “kind” “of”

Final Result (BERT) New Token (GPT-2)
“kind” “of”

New Token (GPT-2) New Token (GPT-2)
“you”

Concat K,V

Concat K,V

T

block_in

Q: L xD, K: L xD, V: L xD0 0 0

attention_in

L xL00

L xL00

L xD0attention_out

block_outBlock 1 Block 1 Block 1

Concat K,V

Q: 1xD, K: 1xD, V: 1xD

0Q: 1xD, K: (1+L)xD, V: (1+L)xD0

1xD

1x(L +1)0

1x(L +1)0 1x(L +2)0

1x(L +2)0

1xD

R
es

id
u

al
 &

 L
ay

er
 N

o
rm

Summarization Stage Generation Stage

10
 t

o
ke

n
s

5 heads

Q
K

V

Q
K

V

Q
K

V
Attention

Accumulate
Importance Scores

Top-k0

Q K V

Attention_prob

Cumulative token
importance scores

Top-k1

Tokens to be remained in next
block (not 0-bit)

Tokens to be quantized to 8-bit
&Others to be quantized to 4-bit

Attention

Accumulate
Importance Scores

Top-k0

Q K V

Top-k1

Tokens to be remained in next
block (not 0-bit)

Tokens to be quantized to 8-bit
&Others to be quantized to 4-bit

FFN

FC

FFN

FC

Pruned QKV (0-bit) 4-bit QKV 8-bit QKV

O00 O01 O02 O0n

O10

O20

On0

O11

O21

On1

O12

O22

On2

O1n

O2n

Onn

Line 0

Line 1

Line 2

Line n

Lin
e 0

Lin
e 1

Lin
e 1

Lin
e n

line Buffer
for Q

lin
e

B
u

ff
e

r
fo

r
K

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

Softmax Unit

O00 O01 O02 O0n

O10

O20

On0

O11

O21

On1

O12

O22

On2

O1n

O2n

Onn

Line 0

Line 1

Line 2

Line n

Lin
e 0

Lin
e 1

Lin
e 1

Lin
e n

line Buffer
for Softmax

results

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

Accumulate
Attention

Probabilities

Q，K，V Fetcher

Token Importance
Score Accumulator

To
p

-k
 f

o
r

h
ig

h
-

p
re

ci
si

o
n

 t
o

ke
n

s

Token
importance

score

DMA

DRAM

Address

Data

T

lin
e

B
u

ff
e

r
fo

r
V

A
tt

en
ti

o
n

 o
u

t

Remained 8-bit token ids
& others 4-bit token ids

Attention
Probabilities

Top-k for pruning

(0-bit quantization)

attention_prob

R
em

ai
n

ed
 t

o
ke

n
 id

s

O00 O01 O02 O0n

O10

O20

On0

O11

O21

On1

O12

O22

On2

O1n

O2n

Onn

Line 0

Line 1

Line 2

Line n

Lin
e 0

Lin
e 1

Lin
e 1

Lin
e n

line buffer
for Q

lin
e

b
u

ff
er

fo
r

K

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

Softmax Unit

O00 O01 O02 O0n

O10

O20

On0

O11

O21

On1

O12

O22

On2

O1n

O2n

Onn

Line 0

Line 1

Line 2

Line n

Lin
e 0

Lin
e 1

Lin
e 1

Lin
e n

line buffer
for Softmax

results

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

Q，K，V Fetcher

Token Importance
Score Accumulator

To
p

-k
 f

o
r

h
ig

h
-

p
re

ci
si

o
n

 t
o

ke
n

s

Token
importance

score

DMA

DRAM

Address

Data

T

lin
e

b
u

ff
er

fo
r

V

A
tt

en
ti

o
n

 o
u

t

Remained 8-bit token ids
& others 4-bit token ids

Attention
Probabilities

Top-k for pruning

(0-bit quantization)

R
em

ai
n

ed
 t

o
ke

n
 id

s

output stationary
Systolic array

output stationary
Systolic array

22

O00 O01 O02 O0n

O10

O20

On0

O11

O21

On1

O12

O22

On2

O1n

O2n

Onn

Line 0

Line 1

Line 2

Line n

Lin
e 0

Lin
e 1

Lin
e 1

Lin
e n

line buffer
for Q

lin
e

b
u

ff
er

fo
r

K

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

Softmax Unit

O00 O01 O02 O0n

O10

O20

On0

O11

O21

On1

O12

O22

On2

O1n

O2n

Onn

Line 0

Line 1

Line 2

Line n

Lin
e 0

Lin
e 1

Lin
e 1

Lin
e n

line buffer
for Softmax

results

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

Q，K，V Fetcher

Token Importance
Score Accumulator

To
p

-k
 f

o
r

8
-b

it

to
ke

n
s

Token
importance

score

DMA

DRAM

Address

Data

T

lin
e

b
u

ff
er

fo
r

V

A
tt

en
ti

o
n

 o
u

t

 remained 8-bit token ids

Attention
Probabilities

Top-k for 8 & 4-bit

tokens

R
em

ai
n

ed
 t

o
ke

n
 id

s

output stationary
Systolic array

output stationary
Systolic array

11

22

O00 O01 O02 O0n

O10

O20

On0

O11

O21

On1

O12

O22

On2

O1n

O2n

Onn

Line 0

Line 1

Line 2

Line n

Lin
e 0

Lin
e 1

Lin
e 1

Lin
e n

line buffer
for Q

lin
e

b
u

ff
er

fo
r

K

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

Softmax Unit

O00 O01 O02 O0n

O10

O20

On0

O11

O21

On1

O12

O22

On2

O1n

O2n

Onn

Line 0

Line 1

Line 2

Line n

Lin
e 0

Lin
e 1

Lin
e 1

Lin
e n

line buffer
for softmax

results

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

Q，K，V Fetcher

Token Importance
Score Accumulator

To
p

-k
 f

o
r

8
-b

it

to
ke

n
s

Token
importance

score

DMA

DRAM

Address

Data

T

lin
e

b
u

ff
er

fo
r

V

A
tt

en
ti

o
n

 o
u

t

Attention
Probabilities

Top-k for 8 & 4-bit

tokens

R
em

ai
n

ed
 t

o
ke

n
 id

s

output stationary
Systolic array

output stationary
Systolic array

11

others 4-bit token ids

 Remained 8-bit token ids

others 4-bit token ids

22

O00 O01 O02 O0n

O10

O20

On0

O11

O21

On1

O12

O22

On2

O1n

O2n

Onn

Line 0

Line 1

Line 2

Line n

Lin
e 0

Lin
e 1

Lin
e 1

Lin
e n

line buffer
for Q

lin
e

b
u

ff
er

fo
r

K

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

Softmax Unit

O00 O01 O02 O0n

O10

O20

On0

O11

O21

On1

O12

O22

On2

O1n

O2n

Onn

Line 0

Line 1

Line 2

Line n

Lin
e 0

Lin
e 1

Lin
e 1

Lin
e n

line buffer
for softmax

results

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

Q，K，V
Fetcher

Token Importance
Score Accumulator

To
p

-k
 f

o
r

8
-b

it

to
ke

n
s

Token
importance

score

DMA

DRAM

Address

Data

T

lin
e

b
u

ff
er

fo
r

V

A
tt

e
n

ti
o

n
 o

u
t

Attention
Probabilities

Top-k for 8 & 4-bit

tokens

R
e

m
ai

n
e

d
 t

o
ke

n
 id

s

output stationary
Systolic array

output stationary
Systolic array

11

 8-bit token ids

4-bit token ids

22

O00 O01 O02 O0n

O10

O20

On0

O11

O21

On1

O12

O22

On2

O1n

O2n

Onn

Line 0

Line 1

Line 2

Line n

Li
n

e
0

Li
n

e
1

Li
n

e
2

Li
n

e
n

line buffer
for Q

lin
e

b
u

ff
er

fo
r

K

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

Softmax Unit

O00 O01 O02 O0n

O10

O20

On0

O11

O21

On1

O12

O22

On2

O1n

O2n

Onn

Line 0

Line 1

Line 2

Line n

Li
n

e
0

Li
n

e
1

Li
n

e
2

Li
n

e
n

line buffer
for softmax

results

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0:3]

[4:7]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

[0
:3

]

[4
:7

]

Q，K，V
Fetcher

Token Importance
Score Accumulator

To
p

-k
 f

o
r

8
-b

it

to
ke

n
s

Token
importance

score

DMA

DRAM

Address

Data

T

lin
e

b
u

ff
er

fo
r

V

A
tt

e
n

ti
o

n
 o

u
t

Attention
Probabilities

Top-k for 8 & 4-bit

tokens

R
e

m
ai

n
e

d
 t

o
ke

n
 id

s

output stationary
Systolic array

output stationary
Systolic array

11

 8-bit token ids

Other ids (4-bit token ids)

O
th

er
 id

s
(0

-b
it

 t
o

ke
n

 id
s)

Fig. 4. Overview of the hardware architecture in DTQAtten.
We design an accelerator to support our dynamic token-

based quantization. The overview of the architecture is shown

T0

T1

T2

T3

T4

T5

T6

T7

T8

T0 T1 T2 T3 T4 T5 T6 T7 T8

4-bit data 8-bit data Systolic array size Compute window sliding

T0

T2

T3

T4

T5

T7

T8

T1

T6

T0 T2 T3 T4 T5 T7 T8 T1 T6

Q TK

Il0

Il1

Il2

Ir0 Ir1 Ir2

Il0

Il1

Il2

Ir0 Ir1 Ir2

Il0r0 Il0r1 Il1r0Il0r2 Il1r1 Il1r2 Il2r0 Il2r1 Il2r2

Stall Stall Stall NonstallStall Stall Stall Stall Stall

Il0r0 Il0r1 Il1r0Il0r2 Il1r1 Il1r2 Il2r0 Il2r1 Il2r2

Nonstall Stall NonstallNonstall Stall Stall Stall StallNonstallArray status

Idle PE
cycle ratio

55.5% 33.3% 55.5% 33.3% 0% 33.3% 55.5% 33.3% 55.5% 0% 0% 16.6% 0% 0% 16.6% 16.6% 16.6% 30.5%

Array status

Idle PE
cycle ratio

Reorder

Clustering

Q TK

q00 k01
q01 q02

q10 q11 q12

q20 q21

q22

q22

k02k00

k11k10 k12

k20 k21 k22

PE00
q00k00

q01k01

q10k00
PE10

q00k10
PE01

PE11

11k01

q

q02k02

q10k10

PE20 q10k00

q11k01

q03k03

11k11

q

q01k11

12k
q

02k
q

12

02

PE02
q00k20

01k21

q

Clock

q03 q04 q05 q06 q07 q08

q13 q14 q15 q16 q17 q18

q23 q24 q25 q26 q27 q28

k31 k32k30

k41k40 k42

k50 k51 k52

k61 k62k60

k71k70 k72

k80 k81 k82

0 1 3 4 5 6 7 8 9 102

q01q03q05 q04q06q08 q07 q02 q00

qq11q12 10qq14q15 13qq17 16

q21q22 20qq24q25 23qq26

k42k52 k32k62

k31k51 k41k71 k61

k22 k12 k02

k01k21 k11

k10k20 k00k40k50 k30k70k80 k60

PE00 PE01 PE02

PE10 PE11 PE12

PE20 PE21 PE22

Sy
st

o
lic

 a
rr

ay

line
buffer

line
buffer

8-bit

4-bit

(a) (b) (c)

Stall Q

TK

T0

T1

T2

T3

T4

T5

T6

T7

T8

T0 T1 T2 T3 T4 T5 T6 T7 T8

4-bit data 8-bit data Systolic array size
 Sliding direction of
calculation window

T0

T2

T3

T4

T5

T7

T8

T1

T6

T0 T2 T3 T4 T5 T7 T8 T1 T6

Q TK

Ir0

Ir1

Ir2

Ic0 Ic1 Ic2

Ir0

Ir1

Ir2

Ir0c0 Ir0c1 Ir1c0Ir0c2 Ir1c1 Ir1c2 Ir2c0 Ir2c1 Ir2c2

Stall Stall Stall NonstallStall Stall Stall Stall Stall

Ir0c0 Ir0c1 Ir1c0Ir0c2 Ir1c1 Ir1c2 Ir2c0 Ir2c1 Ir2c2

Nonstall Stall NonstallNonstall Stall Stall Stall StallNonstall
Overall

array status

Stall cycle
ratio

55.5% 33.3% 55.5% 33.3% 0% 33.3% 55.5% 33.3% 55.5% 0% 0% 16.6% 0% 0% 16.6% 16.6% 16.6% 30.5%

Overall
array status

Stall cycle
ratio

Reorder

Clustering

Q TK

q00 k01
q01 q02

q10 q11 q12

q20 q21 q22

k02k00

k11k10 k12

k20 k21 k22

PE00
q00k00

q01k10

q10k00PE10

q00k01PE01

PE11

11k10

q

q02k20

q10k01

PE20 q20k00

q21k10

q03k30

11k11

q

q01k11

12k
q

02k
q

21

20

PE02 q00k02
01k12

q

Clock

q03 q04 q05 q06 q07 q08

q13 q14 q15 q16 q17 q18

q23 q24 q25 q26 q27 q28

k31 k32k30

k41k40 k42

k50 k51 k52

k61 k62k60

k71k70 k72

k80 k81 k82

0 1 3 4 5 6 7 8 9 102

q01q03q05 q04q06q08 q07 q02 q00

qq11q12 10qq14q15 13qq17 16

q21q22 20qq24q25 23qq26

k42k52 k32k62

k31k51 k41k71 k61

k22 k12 k02

k01k21 k11

k10k20 k00k40k50 k30k70k80 k60

PE00 PE01 PE02

PE10 PE11 PE12

PE20 PE21 PE22

Sy
st

o
lic

 a
rr

ay

line
buffer

line
buffer

8-bit

4-bit

(a) (b) (c)

Q

TK

Stall Stall Stall Stall Stall Stall Stall

Stall Stall Stall Stall

Stall Stall Stall Stall Stall Stall

Stall Stall Stall Stall

StallStallStallStallStall Stall

Ic0 Ic1 Ic2

Fig. 5. (a) The dataflow and the executing timing of VSSA in iteration Ir0c0. (b) The executing window sliding in Q ×KT and the stalling cases when
the input tokens are in normal order. (c) The executing window sliding in Q×KT and the stalling cases after clustering and reordering the tokens.

in Fig. 4. Variable-speed systolic arrays (VSSA) are used to
support mix-precision (4-bit and 8-bit) MM with an output-
stationary style. In each layer, the DMA first fetch the Q, K,
and V vectors of a valid token id and store them into the
corresponding line buffers. Then, the two matrices Q and KT

are feed into the systolic PE array in a step-wise style as shown
in Fig. 5(a) to meet the dataflow requirement in the systolic
array. A softmax unit then processes the result of Q×KT to
get attention probabilities. After that, the attention probabilities
are broadcasted to two modules. Module ❶ is the systolic array
for Attention prob×V , which can produce the final results of
the attention. Module ❷ consists of a token importance score
accumulator and two top-k engines. The token importance
score accumulator accumulates the attention probabilities to
achieve the importance score of each token. The two top-k
engines with high computational parallelism split the input
tokens into 8-bit, 4-bit and 0-bit segments according to the
importance scores as described in Sec. III-B. The token ids
of 4-bit and 8-bit produced by the two top-k engines are sent
to the Q, K, V fetcher which can calculate the physical start
address and the length of the Q, K, V vectors of corresponding
tokens. With the address and data length, the DMA can then
prefetch the Q, K, V vectors for the next layer.

The two top-K engines in ❷ are both of O(n) time
complexity [8]. When there are hundreds of input tokens,
it will take a long period to sort these tokens. However, in
our architecture, the executions of ❷ and ❶ are in parallel.
Therefore, the executing time of ❷ can be hidden because of
the large calculating quantity of the MM in ❶.

B. Low PE Efficiency Problem
As shown in Fig. 5 (b), to compute Q×KT with 9 tokens

and 9 channels using a 3 × 3 VSSA, we will temporally
load part of the two matrices to the VSSA. Specifically, in
each iteration, a tile of Q (include three rows) and a tile of
KT (include three columns) are loaded into VSSA to generate
a 3× 3 results. By Loading Q and KT in the direction of the
arrow, the whole process is divided into 9 iterations as shown
in the table. The VSSA supports mixed-precision MM (4-
bit and 8-bit) by flexibly controlling the calculation mode
of each PE. However, the calculation of each PE should be
synchronized with others for the strict dataflow requirement
in systolic array, which causes pipeline stalls on some of the
PEs. We take the first iteration Ir0c0 shown in Fig. 5 (a) as

an example to explain the seriousness of the pipeline stalls. It
can be indicated from the figure that the overall throughput is
restricted by the “critical path” on PE11 which is responsible
for the inner product between the second row of Ir0 and the
second column of Ic0. Each pipeline step in PE11 takes 4
cycles to perform 8bit-8bit MAC mode. Other PEs performing
8bit-4bit MAC mode or 4bit-4bit MAC mode have to stall to
synchronize with the “critical path”. As our statistics table
shown in Fig. 5 (b), eight of the nine iterations meet the stall
problem. Here, we use the stall cycle ratio to express the under-
utilization degree in PEs of each iteration:

R[iterid] =

∑PE NUM
p=0 stall cycle[iterid][p]

PE NUM ×max cycle[iterid]
(3)

where PE NUM is the number of PEs in the systolic array,
stall cycle is the stall cycle number of each PE in each
iteration, and max cycle is the operating cycles of the PE
with the “critical path”. The table in Fig. 5 (b) shows the
stall cycle ratios of all the 9 iterations. The average 39.5%
stall cycle ratio indicates a low efficiency of the computing
resources.

C. PE Efficiency Optimization Strategy

Facing the under-utilization of the PEs, we propose an
efficient scheduling strategy to optimize hardware efficiency.
We cluster the tokens of the same precision and move the
tokens of low-precision to the front. Correspondingly, the Q
and K of the tokens are clustered and reordered as shown
in Fig. 5 (c). Then the systolic array executes the same nine
iterations following the direction of the arrow to complete the
entire calculation process. The PE utilization of this method
in each iteration is shown in the table in Fig. 5 (c). From the
results, we can figure out that our optimization strategy brings
two benefits: (i) the number of stall iterations is decreased. The
clustering method reduces the number of tiles that contain both
4-bit tokens and 8-bit tokens. Pipeline Stall will not occur if
the loaded two tiles of Q and KT both have single precision;
(ii) the stall cycle ratio of each stall iteration is also decreased.
Only one of Q tile or KT tile contains both 4-bit token and
8-bit token in most stall iterations (Ir0c2, Ir1c2, Ir2c0 and
Ir2c1). In these iterations, the 4-bit × 8-bit operations have
the longest pipeline step of 2 cycles, while the 4-bit × 4-
bit operations have the shortest pipeline step of 1 cycle. Thus,

only 1 extra cycle is wasted in each pipeline step on the stalled
PE, contributing to the overall low stall cycle ratios.

The results of the attention layer with the reordered input
tokens can be expressed as follows:

Attention out∗ = Softmax[(A×Q)× (KT ×AT)]× (A× V)

= A× Softmax[Q×KT × (AT ×A)]× V)

= A× [Softmax(Q×KT)× V]

= A×Attention out

(4)

where elementary matrix A and AT responsible for row and
column reordering are reciprocal pair. Taking A out of the
softmax function or moving the A into the softmax function
will not affect the results. We can draw that reordering the
input tokens results in a reordered Attention out without
impacting the output values. The following Feed-Forward
Network (FFN) will not change the order of Attention out.
Thus, the input tokens to the next Attention-based block are
also ordered by A.

Similarly, reordering the tokens impacts the row order and
the column order in Attention prob of each block as follows:

Attention prob∗ = Softmax[(A×Q)× (KT ×AT)]

= A× Softmax(Q×KT)×AT

= A×Attention prob×AT

(5)

as the token importance scores are achieved by accumulating
the Attention prob in each column, the left A has no impact
on importance scores. The right AT makes the order of
importance scores matches that of the input tokens to the next
attention-based block. Correspondingly, the token ids obtained
by sorting the importance scores are also based on the order
caused by A. Thus, we can sequentially store the block results
of ordered input tokens on DRAM and then use the token
ids directly in the next block to fetch tokens with no extra
hardware overhead.

V. EXPERIMENTS

A. Experimental Setup

To valid our quantization algorithm, we conduct experi-
ments on attention layers of BERT-Base [2], BERT-Large [2],
GPT-2-Small [3] and GPT-2-Medium [3]. We fine-tune the
BERT models on nine tasks from GLUE [1] and SQuAD V2.0
[1]. We fine-tune the GPT-2 models on language modeling
task, including Wikitext-2/-103 [1], and 1BW [18].

For computational performance, we compare DTQAtten
with two kinds of accelerators: 1) NN-based accelerators,
including Eyeriss-based [19] design (with 16-bit models) and
Systolic-based design (with models quantized by our proposed
method, but mapped on VSSA without our optimization strat-
egy). In 40nm TSMC technology library, the area occupation
of a 16-bit MAC unit is almost 16× larger than a 4-bit
MAC unit. Therefore, with a similar area budget, Eyeriss-
based design has a total of 224 16-bit MAC units, Systolic-
based design and DTQAtten have 3168 (≈ 16×18×11) 4-bit
MAC units. 2) Attention accelerators, including A3 [10],
MNNFast [9] and SpAtten [8]. For a fair comparison, we also
restrict all four designs with a similar area budget of PEs. We
use RTL-Verilog to implement our architecture and synthesize

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

A
c
c
u

ra
c
y
/P

P
L

P
e

rc
e

n
ta

g
e

0-bit percentage 4-bit percentage 8-bit percentage Accuracy

BERT-Base BERT-Large
GPT-2

-Small

GPT-2

-Medium

Fig. 6. Comparisons of the model accuracy and percentages of 8/4/0-bit
tokens on different datasets.

RTL using Synopsys DC on 40nm TSMC library to estimate
latency, area and power with target 1ns clock period (1GHz).
Besides, we use CACTI [20] to estimate the energy and area
of SRAMs and FIFOs.

B. Quantization Algorithm Performance

In Fig. 6, we show the percentages of 0-bit (pruning), 4-bit
and 8-bit of the four models on each task and the correspond-
ing accuracies. As our exploration method in Section III-C,
we use a interval of 5% to sample from 0% to 100% as
the search space for r0b i, r4b i, r8b i and search for 20
iterations using Bayesian optimization method [16] in each
task. λ in Equation 1 is set as 0.37 (for BERT) and 0.24 (for
GPT-2). We can observe from Fig. 6 that compressed BERT-
Base and compressed BERT-Large show negligible accuracy
degradation (within 1%) on the nine datasets compared with
that of the original models, except 1.7% for squad-v2. Par-
ticularly, for some tasks, the compressed models show even
better performance. Compressed BERT-Base achieves a 0.2%
accuracy improvement on task mprc (87.9% vs. 88.1%), and
compressed BERT-Large shows a 0.3% accuracy improvement
on task mnli-mm (82.7% vs. 83.0%). The average percentages
of the 0-bit, 4-bit and 8-bit parts in BERT are 28%, 41.4%
and 30.6%, respectively. GPT-2 exhibits no accuracy loss on
each dataset except a negligible 0.3% PPL enhancement for
GPT-2-small on task 1BW (56.3% vs 56.0%). The average
percentages of the 0-bit, 4-bit and 8-bit parts in these two GPT
networks account for 21.8%, 52.0% and 26.2%, respectively.

0%

20%

40%

60%

80%

P
e
rc
e
n
ta
g
e

SpAtten DTQAtten

8-bit4-bit0-bit

Fig. 7. Comparisons of 0-bit/4-bit/8-bit ratios between DTQAtten and
SpAtten [8].

We further compare the performance of our quantization
method with SpAtten [8], the state-of-the-art 2-step com-
pression method for attention-based model. We reproduce
the compression method of SpAtten, in which we prune
the unimportant tokens and then implements a layer-wise
quantization (4-bit/8-bit) according to each layer’s attention
probability distribution. For a fair comparison, we gradually
increase the pruning ratio (0-bit) and then the percentage of 4-
bit layers in SpAtten until the accuracy performance is equal to
or lower than the corresponding ones of DTQAtten shown in
Fig. 6. Finally, the comparison of the ratios of 0-bit, 4-bit and

8-bit using the two methods are shown in Fig. 7. It can be fig-
ured that although the average 0-bit ratio in SpAtten (29.8%)
is a little bit higher than that in DTQAtten (26.3%), the
average ratio of the 4-bit part in SpAtten (18.9%) is much
lower than that in DTQAtten (40.5%). Thus, DTQAtten has a
totally higher compression ratio. Two factors contribute to the
better compression effect of DTQAtten: (i) we exploit a finer-
grained quantization with token-wise granularity, which helps
to remove the redundancy more accurately; (ii) compared to
the 2-step method which greedily searches the optimal pruning
ratio first and then searches the optimal low-bit ratio based on
the first step, the 1-step DTQAtten only needs to search in a
unique design space, thus has a larger opportunity to find the
global optimal solution for model compression.

C. Computational Performance and Energy Consumption

Fig. 8 shows the average speedup and energy cost compar-
isons of DTQAtten with NN-based accelerator on attention
layers. Where the implementations of Eyeriss-based design
without model compression are normalized to 1. Systolic-
based design achieves 8.17×, 9.16×, 5.67×, 6.06× speedup
and reduce 56%, 68%, 49%, 53% energy cost on each model.
The speedup and reduced energy cost mainly come from the
low computational overhead of the models compressed by our
proposed quantization algorithm. DTQAtten achieves 13.57×,
16.42×, 10.67× and 11.8× speedup and reduce 71%, 79%,
71%, 74% energy cost for each model. The low hardware
efficiency problem in Systolic-based design is solved to a great
extent in DTQAtten, which contributes to a better speedup
ratio. Besides, Combining the advantages of (i) low-precision
PEs; (ii) fewer data transferred between DRAM and on-chip
buffer; (iii) topological advantage of systolic array; and (iv)
lower inference latency, DTQAtten costs less energy than the
other two designs.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

4

8

12

16

20

N
o

rm
.

E
n

e
rg

y

S
p

e
e

d
 u

p

Speedup Energy cost

BERT-Base BERT-Large
GPT-2

-Small

GPT-2

-Medium

Fig. 8. Performance comparisons with each NN-based accelerator.

The comparisons among MNNFast, A3, SpAtten and
DTQAtten are shown in Tab. I. These four attention accel-
erators all explore the sparsity in attention layer. However,
only DTQAtten considers fine-grained token-based quanti-
zation. DTQAtten achieves the highest throughput (7.94×
compared with MNNFast) and the smallest area cost (67%
of the area cost in A3) during the four designs. The high
throughput is contributed by (i) the high compression ratio
using our quantization method, which reduces a large amount
of computational overhead and alleviates lots of bandwidth
pressure for accelerators; (ii) our accelerator and optimization
strategy can efficiently convert the low-precision computing
into low latency, which is contrasted to SpAtten that only takes
advantage of the bandwidth benefits of the low-precision data.

TABLE I
COMPARISONS AMONG FOUR ATTENTION ACCELERATORS

MNNFast A3 SpAtten DTQAtten

Technology FPGA (28nm) ASIC(40nm) ASIC (40nm) ASIC (40nm)

Frequency 1GHz (projected) 1GHz 1GHz 1GHz

Area (mm2) - 2.08mm2 1.55mm2 1.41mm2

Throughput
(GOP/s) 120 (1×) 221 (1.8×) 360 (3.0×) 952.8 (7.94×)

Energy Effi.
(GOP/j) 120 (1×) 269 (2.2×) 382 (3.2×) 1298.4 (10.82×)

Area Effi.
(GOP/s/mm2) 106 (1×) 238 (2.2×) 678.4 (6.4×)

The smallest area overhead is mainly because the budget of
the 4-bit PEs in our design is smaller (about 71% of the area
of the 12-bit PEs in SpAtten) than the high-precision PEs in
other designs. Besides, the energy cost of our design is also
the lowest.

VI. CONCLUSION
In this paper, we find that different tokens in attention-based

NLP models show different tolerance to noise. Inspired by the
similarity between noise and quantitative loss, we propose to
dynamically quantize tokens with different precision (0-bit, 4-
bit and 8-bit) according to their importance level to reduce the
computation complexity without losing accuracy. Moreover,
we propose a hardware architecture with an optimization
strategy to exploit our quantization algorithm efficiently. The
experiments show that our algorithm-architecture co-design
DTQAtten outperforms other attention accelerators in accu-
racy, performance and energy efficiency.

REFERENCES

[1] D. W. Otter et al., “A survey of the usages of deep learning for natural
language processing,” TNNLS, 2021.

[2] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers
for language understanding,” 2019.

[3] A. Radford et al., “Language models are unsupervised multitask learn-
ers,” in OpenAI Blog, 2019.

[4] Wang et al., “Apq: Joint search for network architecture, pruning and
quantization policy,” in CVPR, 2020.

[5] Z. Song et al., “Drq: Dynamic region-based quantization for deep neural
network acceleration,” in ISCA, 2020.

[6] S. Shen et al., “Q-bert: Hessian based ultra low precision quantization
of bert,” in AAAI, 2020.

[7] S. Kim et al., “I-bert: Integer-only bert quantization,” ICML, 2021.
[8] Wang et al., “Spatten: Efficient sparse attention architecture with cascade

token and head pruning,” in HPCA, 2021.
[9] H. Jang et al., “Mnnfast: A fast and scalable system architecture for

memory-augmented neural networks,” in ISCA, 2019.
[10] T. J. Ham et al., “A3: Accelerating attention mechanisms in neural

networks with approximation,” in HPCA, 2020.
[11] Vaswani et al., “Attention is all you need,” in NIPS, 2017.
[12] Lin et al., “Towards fully 8-bit integer inference for the transformer

model,” in IJCAI, 2020.
[13] Jouppi et al., “In-datacenter performance analysis of a tensor processing

unit,” in ISCA, 2017.
[14] H. Genc et al., “Gemmini: Enabling systematic deep-learning architec-

ture evaluation via full-stack integration,” in DAC, 2021.
[15] O. Zafrir et al., “Q8BERT: quantized 8bit BERT,” CoRR, 2019.
[16] J. Snoek et al., “Practical bayesian optimization of machine learning

algorithms.” NIPS, 2012.
[17] H. Yu et al., “Search what you want: Barrier panelty NAS for mixed

precision quantization,” 2020.
[18] C. Chelba et al., “One billion word benchmark for measuring progress

in statistical language modeling,” 2013.
[19] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable acceler-

ator for deep convolutional neural networks,” 2017.
[20] “Cacti 6.0: A tool to model large caches,” Bragantia, 2009.

