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Attention-based block
• BERT and GPT family.
• Attention_prob and Attention_out.

Pruning and Quantization
• For attention-based NLP models, on Q, K 

and V.
• Pruning: MnnFast , A3   .
• Quantization: I-BERT   , Q-BERT   .
• Pruning & Quantization: SpAtten (token-

wise pruning and layer-wise quantization) .

[1] [2]

[3] [4]

[5]

Problem
• Quantization for attention-based NLP models

are still coarse-grained.
• Quantization is conducted separately from 

pruning for attention-based NLP models.

[1] H. Jang et al., “Mnnfast: A fast and scalable system architecture for memory-augmented neural networks,” in ISCA, 2019.
[2] T. J. Ham et al., “A3: Accelerating attention mechanisms in neural networks with approximation,” in HPCA, 2020. 
[3] S. Kim et al., “I-bert: Integer-only bert quantization,” ICML, 2021.
[4] O. Zafrir et al., “Q8BERT: quantized 8bit BERT,” CoRR, 2019.
[5] Wang et al., “Spatten: Efficient sparse attention architecture with cascade token and head pruning,” in HPCA, 2021.
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• Normal Systolic array:
• Advantage: friendliness for very large scale integration (VLSI) with 

high speed and low cost. 
• Disadvantage: can only support “one” precision. 

• Variable-speed Systolic Array (VSSA)   :
• Feature: using 4-bit MACs, each can be united into an 8-bit 

MAC taking four cycles in a timing-multiplexing manner.
• Advantage: both support 4-bit and 8-bit computing.
• Disadvantage: The pipeline stall occurs when the adjacent 

PEs execute MACs with different precisions. 

Variable-speed Systolic Array (VSSA)

[1]

[1] Z. Song et al., “Drq: Dynamic region-based quantization for deep neural network acceleration,” in ISCA, 2020 

Problem: The high pipeline stall ratio incurs the low 
computational efficiency of VSSA. 
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Different tokens show Different Tolerance to Noise
• Split into three segments （according  to the importance scores 

calculated in Fig(a).）:

• Segment 0 : 15% important tokens

• Segment 1: 70% middle important tokens

• Segment 2 : 15% most unimportant tokens

• Experiments:

• NAI: only add noise to segments 0.

• NAM: only add noise to segments 1.

• NAU: only add noise to segments 2. 

• PU: directly prune the tokens in segment 2.

• Finding ( The results are shown in Figure(b).):

• tokens in different segments show varied tolerance to noise.

• token’s tolerance to noise is inversely proportional to its importance degree

• pruning unimportant tokens has a negligible effect on the model accuracy.

• Conclusion: achieving a high compression ratio while maintaining accuracy requires:

• restricting the quantization impact (equivalent to noise) for the important tokens. 

• relaxing the quantization for the unimportant tokens.

(a) Attention probabilities are summed over each 
column of the attention_prob to get importance 
scores.

(b) BERT-Base accuracy on task qnli with noise (u 
means noise magnitude) added on tokens with different 
importance scores. 

[1] D. W. Otter et al., “A survey of the usages of deep learning for natural language processing,” TNNLS, 2021. 

[1]



• Use attention probabilities to calculate the importance score of each input token dynamically in each attention block. 

• Two-level top-K engine to split the tokens into three segmentation according to their importance scores.

• important tokens (segment 0)   high-precision (8-bit); 
middle important tokens (segment 1)  low-precision (4-bit); 
unimportant tokens (segment 2)  prune (0-bit); 

Dynamic Token-based Quantization Algorithm
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Our method is a joint quantization algorithm!

• Design Space (percentage of 
each segmentation in each 
block) Explore

• Method:
Bayesian optimization

• Target problem:

:  model cross-entropy loss

:  bit-level operation number 
(BOPs) of the model.



• VSSAsupport mix-precision (4-bit and 8bit) matrix multiplication.

• Attention_prob is broadcasted to two modules:

• Module : contains VSSAs produce the final results of  the 
attention.

• Module : consists of a token importance score accumulator and two 
top-K engines:

• token importance score accumulator accumulates the 
attention probabilities to achieve the importance score of each 
token.

• Two top-k engine split the input tokens into 8-bit, 4-bit and 
0-bit segments according to the importance scores

• The executions of Module      and module     are in parallel, thus, the 
execution time of module      can be hidden because of the large 
calculation quantity of the matrix multiplication in module      .

• Q, K, V fetcher  calculate the physical start address and the length of the 

Q, K, V vectors using the token ids produced by the two top-k engines.

• DMA prefetch the Q, K, V vectors for the next layer.

Hardware Architecture
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Overview



• The whole process is split into 9 iterations as shown in Fig1.(b).

• Stall problem: The calculation of each PE should be synchronized with others for the strict dataflow requirement in systolic array

• If the accuracy of the two matrices involved in the calculation is not of single-precision (e.g. the first iteration Ir0c0 of the calculation in Fig1.(b), of which 
the dataflow is shown in Fig1.(a)), the PE responsible for low-precision calculation~(PE00,PE10,PE20,PE01,PE02  in Fig1.(a) ) needs to stall to wait for 
the PE of high-precision calculation~(PE11 in Fig1.(a), which is the “critical path”, determine the bottle neck of the calculation throughput).

Hardware Architecture
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PE Efficiency Optimization Strategy

Fig 1. (a) The dataflow and the executing timing of VSSA in iteration Ir0c0. (b) The executing window sliding in Q × K  and the stalling cases when the input tokens are 
in normal order. (c) The executing window sliding in Q × K  and the stalling cases after clustering and reordering the tokens.

T

T



• Severity of the stall problem: 

• 8 of the 9 iterations in Fig1.(b) meet the stall problem

• the average 39.5% of the execution cycles meet the stall problem.

Hardware Architecture
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PE Efficiency Optimization Strategy

Fig 1. (a) The dataflow and the executing timing of VSSA in iteration Ir0c0. (b) The executing window sliding in Q × K  and the stalling cases when the input tokens are 
in normal order. (c) The executing window sliding in Q × K  and the stalling cases after clustering and reordering the tokens.

T

T

Very low efficiency of the computing resources !!!



• PE Efficiency Optimization Strategy:  

• Method: reorder the rows/columns of Q/K matrix to cluster the tokens of the same precision together as shown in Fig 1.(c).

• Effect: 

• reduce the stall iteration number from 8 to 5.

• Reduce the ratio of the average stall cycles in the stall iteration from 39.5% to 19.38%.

Hardware Architecture

10

PE Efficiency Optimization Strategy

Fig 1. (a) The dataflow and the executing timing of VSSA in iteration Ir0c0. (b) The executing window sliding in Q × K  and the stalling cases when the input tokens are 
in normal order. (c) The executing window sliding in Q × K  and the stalling cases after clustering and reordering the tokens.

T

T

The efficiency of the computing 
resources is improved !!!



• The effect of the reorder the input tokens to the Attention output:

Hardware Architecture
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PE Efficiency Optimization Strategy

T

T

• Reordering the input tokens results 
in a reordered Attention output  

without impacting the output values.

• The effect of the reorder the input tokens to the Importance scores and token ids:
• Token importance scores are achieved by 

accumulating the Attention prob in each 
column, the left A has no impact on token 
importance scores. 

• The right A  makes the order of importance 
scores matches that of the input tokens to 
the next attention-based block. 

• Correspondingly, the token ids obtained by 
sorting the importance scores are also 
based on the order caused by A. 

Thus, we can sequentially store the block results of ordered input tokens on DRAM and then use the token ids directly in the next block to 
fetch tokens with no extra hardware overhead.

T
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Quantization Algorithm Performance

T

• Compressed BERT-Base and compressed BERT-Large show 
negligible accuracy degradation (within 1%) on the nine datasets 
compared with that of the original models, except 1.7% for 
squad-v2. The average percentages of the 0-bit, 4-bit and 8-bit 
parts in BERT are 28%, 41.4% and 30.6%, respectively. 

• GPT-2 exhibits no performance loss on each dataset except a 
negligible 0.12% PPL enhancement for GPT-2-small on Wiki-
103 (37.62% vs 37.5%). The average percentages of the 0-bit, 
4-bit and 8-bit parts in these two GPT networks account for 
21.8%, 52.0% and 26.2%, respectively.

• the average 0-bit ratio in SpAtten (29.8%) is a little bit 
higher than that in DTQAtten (26.3%).

• the average ratio of the 4-bit part in SpAtten (18.9%) is 
much lower than that in DTQAtten (40.5%). 

• Thus, DTQAtten has a totally higher compression ratio.
Comparison of the percentages of 8/4/0-bit tokens with the state-of-the-art 2-step compression method 
(SpAtten )

Comparisons of the model performance and percentages of 8/4/0-bit tokens on different datasets. 

[1] Wang et al., “Spatten: Efficient sparse attention architecture with cascade token and head pruning,” in HPCA, 2021.

[1]
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Computational Performance

T

• Compared with Eyeriss-based design, DTQAtten
achieves 13.57×,16.42×, 10.67× and 11.8× speedup 
and reduce 71%, 79%, 71%, 74% energy cost for 
each model. 

• Among the four attention accelerators, DTQAtten
achieves the highest throughput (7.94× compared with 
MNNFast) and the smallest area cost (67% of the area 
cost in A3) during the four designs. 
.

Comparisons among four Attention accelerators.

Performance comparisons with each NN-based accelerator.



• We find that different tokens in attention-based NLP models show 

different tolerance to noise. 

• We propose to dynamically quantize tokens with different precision 

(0-bit, 4-bit and 8-bit) according to their importance level to reduce 

the computation complexity without losing accuracy. 

• We propose a hardware architecture with an optimization strategy 

to exploit our quantization algorithm efficiently. 

Conclusion
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Thanks!
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