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Abstract—Resistive Random-Access-Memory (ReRAM) cross-
bar is one of the most promising neural network accelerators,
thanks to its in-memory and in-situ analog computing abilities for
Matrix Multiplication-and-Accumulations (MACs). Nevertheless,
the number of rows and columns of ReRAM cells for concurrent
execution of MACs is constrained, resulting in limited in-memory
computing throughput. Moreover, it is challenging to deploy
Deep Neural Network(DNN) models with large model size in
the crossbar, since the sparsity of DNNs cannot be effectively
exploited in the crossbar structure.

As the countermeasure, we develop a novel ReRAM-based
DNN accelerator, named Bit-Transformer, which pays attention to
the correlation between the bit-level sparsity and the performance
of the ReRAM-based crossbar. We propose a superior bit-flip
scheme combined with the exponent-based quantization, which
can adaptively flip the bits of the mapped DNNs to release redun-
dant space without sacrificing the accuracy much or incurring
much hardware overhead. Meanwhile, we design an architecture
that can integrate the techniques to massively shrink the crossbar
footprint to be used. In this way, It efficiently leverages the bit-
level sparsity for performance gains while reducing the energy
consumption of computation. The comprehensive experiments
indicate that our Bit-Transformer outperforms prior state-of-
the-art designs up to 13×, 35×, and 67×, in terms of energy-
efficiency, area-efficiency, and throughput, respectively.

Index Terms—Processing-in-memory, Neural Network, Hard-
ware Accelerator, Sparsity

I. INTRODUCTION

In the last few years, deep learning techniques (e.g. DNN)
have achieved great success in various computer vision [1],
[2] and natural language processing tasks [3]. The fast de-
velopment of this field shows a significant momentum of
drastically growing model size from groundbreaking model
AlexNet [1] (61M parameters) to the surprisingly powerful
GPT-3 [3] (175B parameters). On the one hand, the increasing
model size leads to an increasing accuracy. On the other
hand, the long-distance data communication in conventional
Von-Neumann architecture is emerging as the computation
bottleneck for data-intensive computation tasks (e.g., neural
network inference). This bottleneck is well known as “mem-
ory wall” [4]. Thus, designing a more efficient accelerating
platform is urgent to match the rapidly rising model size and
computation workload of DNNs.

As the countermeasure, ReRAM crossbar [5] emerges as a
promising solution, owing to its Computing-In-Memory (CIM)
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capability that can mitigate massive data movements be-
tween on/off-chip memory. Moreover, its in-situ current mode
weighted summation operation intrinsically matches the dom-
inant MAC operations in the neural network, making it one of
the most promising DNN accelerators [5]–[8].

A certain number of ReRAM crossbar-based DNN accel-
erator designs are built in prior works, such as ISAAC [9],
PRIME [4], PipeLayer [10], and CASCADE [6]. With the
increasing model size, various model compression methods are
developed to reduce the model size and increase throughput.
Based on these accelerator designs, several efforts are made
to utilize the sparsity in ReRAM crossbar structures, such as
SRE [11], PIM-Prune [12] and TraNNsformer [13]. Neverthe-
less, those works are still subject to several weaknesses:
• Retraining is usually needed to recover the accuracy

degradation caused by increasing sparsity. Such process
is time-consuming and requires accessing to the training
data, which is not always feasible in real-world scenarios
due to users’ privacy and security concerns.

• Complicated peripheral circuits with complex operations
are introduced to utilize the unstructured sparsity, which
will increase the overhead and reduce the area-efficiency.

• Too idealistic crossbar structure is considered, which ig-
nored the maximum number of rows that can be executed
at the same time.

In this paper, we propose an algorithm-hardware co-design
framework using Single-Level-Cells (SLCs) ReRAM crossbar,
called Bit-Transformer, to address these weaknesses. Our
contribution could be summarized as:
• We propose a 3-dimension bit-wise mapping scheme and

an accompanying bit-flip scheme to introduce crossbar-
friendly bit-wise sparsity without retraining the model.

• We design a novel ReRAM-based architecture, which
integrates the algorithm framework and only modifies the
existing architecture with small overhead.

• We have conducted comprehensive experiments upon var-
ious datasets and neural network benchmarks. The results
indicate that our Bit-Transformer outperforms prior state-
of-the-art designs up to 13×, 35×, and 67×, in terms of
energy-efficiency, area-efficiency, and throughput respec-
tively.

The remainder of this paper is organized as follows: Sec-
tion II introduces the background and motivation of the



proposed design. Section III describes the algorithm for Bit-
Transformer. Section IV elaborates the proposed the architec-
ture and circuit. Section V present the experimental method-
ology and experiment results. Finally, Section VI concludes
this paper.

II. BACKGROUND AND MOTIVATION

A. DNN Model Compression

Two main streams of DNN model compression techniques
are weight quantization and weight pruning/sparsification. Es-
pecially, quantization is a necessary step to deploy the network
on hardware and accelerate DNN inference.

Weight Quantization attempts to reduce the bit-width of
operands in the calculation, which shrinks the model size for
memory saving and simplify the operations for acceleration.
Many of the prior works [14], [15] pursue quantizing the
model with extremely low bit-width. They have to adopt
an iterative quantization and retraining/fine-tuning method to
learn the network characteristic from the degree of accu-
racy degradation during quantization steps. The power-of-two
based quantization [16] quantizes weights into the sum of
several power-of-twos (Eq. 1), which is a good candidate
for quantization to facilitate hardware implementation. These
methods quantize weights into the sum of multiple power-of-
twos with negligible accuracy loss and the binary encodings of
the quantized weights naturally match the SLC-based crossbar:

Q(weight) = γ × (

n∑
i=1

2pi), pi ∈ Z (1)

Where γ is a scaling coefficient to make weight into the range
of [0, 1], pi is the exponent of power-of-two and n is the
number of power-of-two terms for superposition.

Network Sparsification attempts to reduce the number of
operands and operations in the calculation to leverage the
redundancy in weights.

Existing works [12], [13], [17], [18] mainly focus on the
structured compression (i.e., quantization and sparsification)
for practical acceleration and the compression object is the
numbers (i.e., weights). Besides, these works lead to user-
unfriendliness because it normally need to search the optimal
hyperparameters or require model retraining to mitigate the
accuracy degradation, which is time-consuming. For example,
PIM-Prune [12] partitions the weight matrix into blocks and
further reorders the columns and rows in each block to cluster
non-zero weights onto the same crossbar for coarse-grain
pruning with more than 200 epochs fine-tuning.

B. ReRAM-Based DNN Acceleration

ReRAM crossbar is emerging as a promising solution to
mitigate problems such as memory wall, owing to its high
memory accessing bandwidth and high density [4], [6], [9],
[10], [19]–[23]. The existing researches about ReRAM-based
NN accelerators use a mass of crossbar arrays and treat the
ReRAM crossbar as a low-precision, low-energy and high-
speed dot-product engine.
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Fig. 1: In-situ computation based on the ReRAM crossbar.

Digital inputs are first converted into analog voltages us-
ing digital-to-analog converters (DACs). These voltages are
applied on each word-line and the output current on each
bit-line collects the current of all the cells in that column
according to the Kirchhoff’s law. Then, the gathered current is
the weighted sum of inputs, which implemented the function
of MACs. Lastly, analog-to-digital converters (ADCs) convert
these current into digital value to go through further calcula-
tion (as shown in Fig. 1).

However, there are several problems that impede the prac-
tical application of ReRAM crossbar accelerators. Firstly, the
cell arrangement is tightly coupled with the computation result,
making it hard to utilize the sparsity of single cells. Even if a
zero-leveled cell is detected and do not contribute to the output
value in that bit-line, it can not be removed since it shares the
input with other cells on the same row. Also, the capacity
of ADCs and the non-linearity current-voltage characteristic
limits that a single input is split into bits to be fed in several
cycles and multi-level cells which store multiple bit in one
ReRAM cell degrade the accuracy.

Most Importantly, the non-ideal effects limit the number
of rows and columns that can be executed at the same time.
For example, the IR drop caused by wire resistance lead to
a huge voltage drop at the target cell and limits the number
of columns that can be executed at the same time [8], [11],
[24]. In addition, the maximum workload of the analog-digital
converters that reads the gathered current in bit-lines limits
the number of rows that can be executed at the same time,
especially the maximum number of low-conduction state cells
in a single column. Therefore, there are only 9 rows, and
8 columns of ReRAM cells on a 512 × 256 crossbar for
concurrent execution of MACs in the macro of a state-of-the-
art ReRAM-crossbar acceleration [25] in 65nm process.

C. Motivation

Because of the problems that current ReRAM-crossbar ac-
celerators have, we propose our Bit-Transformer to improve
the current design to meet the following properties:

1) The design use single-level cells (SLCs) to store the
weights, which means that each cell will only save one
bit, 0 or 1.

2) The design can utilize the bit-level sparsity of SLCs
to increase the throughput of our accelerator without
introducing complicated peripheral circuits. Specifically,
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Fig. 2: The overview of Bit-Transformer algorithm. (a) We first quantize the weights into the sum of multiple power-of-twos. Then, we
compare the traditional and our bit-wise and inter crossbar mapping. (b) We generate hardware-friendly bit-wise sparsity using our bit-flip
and compensation scheme, while minimizing the value bias generated on weights.

each column will contain limited number of ‘1’s, so that
more number of rows can be executed concurrently.

3) The design doesn’t require retrain to recover the accuracy
brought by increasing the sparsity. In addition, it would
be a bonus if finetuning could provide an increase in
accuracy.

III. APPROACH

A. Overview

We propose our Bit-Transformer algorithm framework to
exploit the bit-wise sparsity of weight matrix, i.e., the “0” bits
in the codeword, with the attempt of enhancing the crossbar
utilization and throughput. The key idea is to reorganize the
bits of the weight matrix with the architecture support to
generate the sparsity that is expensive or even impossible to
use in conventional architectures.

As shown in Fig. 2, the algorithm consists of three
parts: quantization (a) 1 , mapping (a) 3 and bit-flip (b).
Quantization turns weights into codewords that can be de-
ployed on crossbars and provide preliminary sparsity. Mapping
maps the codeword into multiple crossbars to utilize bit-wise
sparsity and simplify peripheral circuits. Finally, the bit-flip
scheme transforms the original bit-level sparsity into veritable
performance gain.

B. Quantization and Mapping

The quantization and mapping are illustraed in Fig. 2(a).
We first quantize the weights into the sum of limited number
of power-of-twos [16], as shown in equation Eq. (1). In the
example 1 , the maximum number of power-of-twos is set to

be three. This quantization method limits the ‘1’ bits in the
codeword and thus increases the preliminary overall bit-level
sparsity while retains the accuracy well.

Because of the non-linearity of ReRAM cells, we use single-
level cells to store the weights, which means that each cell
only have two states: high-conductance state (1) and low-
conductance state (0). Then, a quantized weight can be stored
in C single-level cells wi:

Q(weight) = γ ×
C∑
i=1

wi2
−i (2)

Then, the inner product of input and weight array can be
calculated as the sum of shifted output currents

X ·W = γ ×X ·
C∑
i=1

wi2
−i

= γ ×
C∑
i=1

2−i(X ·wi) = γ ×
C∑
i=1

2−iIi

(3)

In Fig. 2(a) 2 , conventional weight mapping methods un-
fold a H ×W weight matrix of C-bit quantized weights to a
large H × (W ×C) bit matrix, and map into dH/he× dW ×
C/we crossbars of size h × w. This method is called intra-
crossbar mapping, which maps all the bits of a weight on
a single crossbar. However it ignores the difference of bit-
level sparsity and significance between different digits and
also leads to complicated peripheral circuits when columns
are pruned, since each column should be shifted by different
values before they are added together, especially when several
columns are pruned.
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Therefore, we propose our bit-wise intra-crossbar mapping
scheme 3 that split the weight matrix bit-wisely into C bit
matrices (denote as BMi) of size H ×W and each bit matrix
is then divided into several crossbars. The bits of each weight
are located in the same place of all bit matrices. Firstly, our
method enables us to assign different pruning rates to different
bit matrices, since the sparsity and significance of different
digits differs greatly. The more significant digits are more
sparse but their pruning rate should be smaller due to their
higher significance. In addition, the output value in the same
bit matrix will be shifted by a same amount when they are
added up to the final result, which simplifies the peripheral
circuit even when columns are pruned.

C. Bit-Flip and Compensation Scheme

Our bit-flip and compensation scheme aims at limiting the
maximum number of ‘1’s in each column to increase the
number of row can be executed concurrently and prune unim-
portant columns to improve throughput. As shown in Fig. 2(b),
the scheme is consisted of the following steps.

1) Lock the columns that are already empty in all bit
matrices and execute step Item 2-4 for bit matrix 2 to
C. The first bit matrix is skipped since it is usually
sparse and very significant, which does not need further
sparsification.

2) Calculate the cost of flipping each ‘1’ into ‘0’ in the given
bit matrix. For each ‘1’ bit, its one more significant digit
and two less significant bits are take into consideration to
compensate the value difference. The cost is determined
as the smallest value difference by adjusting these cells
that are has not been locked. Examples are given in Fig. 3.

3) Select the cells to flip and compensate the flips ac-
cordingly. We set two thresholds for the bit matrix: the
maximum number of ‘1’s in a column k and the number
of columns left in the matrix n. Then, for the column
whose number of ‘1’ cells exceeds k, the cells that have
the lowest flipping cost are flipped. Also, we calculate
the total cost of all columns can flip the ‘1’s in those
columns with lowest total cost, until n columns are left.
At the same time, we compensate the flips so that the
minimum value bias are reached.
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4) Lock the columns that have the maximum number of ‘1’s
and are newly pruned.

Thanks to our bit-wise inter-crossbar mapping scheme, the
maximum number of ‘1’s in a column and the number of
columns left can be determined individually and adaptively
for each bit matrix, and the pruned columns will introduce
little extra overhead to the peripheral circuit.

For example, in Fig. 2 (b), for bit matrix 2, we first
calculated the cost of flipping each ‘1’ cell. After that we find
that column 2 and 4 have more than two ‘1’s, thus the cells
that have the lowest column is flipped. Also, the first column
has the lowest total cost and thus will be pruned. Finally, we
flip the chosen ‘1’s in bit matrix 2 and compensate their value
bias, and lock the modified columns. We can see in Fig. 4 that
the bit-wise sparsity is greatly increased after processing by
our bit-flip and compensation scheme increases dramatically.

IV. ARCHITECTURE

A. Architecture Overview

We present the overview of Bit-Transformer architecture
aiming at inference in edge devices. As shown in Fig. 5,
each bank consists of three parts, which are all connected
to a shared bus: 1) a controller that decodes instructions
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and provides control signals to all the peripheral circuits;
2) an in-situ Computation Units (CU), which is the core
computing and storage unit; 3) shared blocks that contain the
sigmoid units, pooling units, and buffers for storing activations
(i.e., intermediate computing results). Each CU consists of
input/output registers, crossbars (XBs), ADCs, and shift-and-
add units, which are drawn by blue box. These are consistent
with the conventional ReRAM based architecture. Besides, the
components marked with the orange line need to be added and
optimized to exploit our techniques. Furthermore, to better
integrate our techniques to achieve better performance, we
customize the peripheral circuits.

B. Module and DataFlow

Controller. Controller in Fig. 5 A provides control signals
to all the peripheral circuits and drive the finite state machines
that steer the inputs and outputs correctly after every cycle
based on the technique configurations.

In-situ Computation Unit. Fig. 5 B shows the CU which
contains multiple crossbars and the peripheral circuit. The
DACs receive the input digital signals from the input register
and convert them into analog voltage signals as the input for
ReRAM-based crossbar. After executing the MAC operation
in the crossbar, the analog output current signal are then send
to the ADCs to convert the analog voltage signal into digital
output. Then, the shifters shift the obtained output according
to the significance of the crossbar, i.e., the index of bit matrix.
The column sparsity mark registers (CSRM) then pad zeros to
recover the pruned output into the original size and send the
result to the accumulator to obtain the final result of the input
cycle. Given that the input are divided into bits and are send in
several cycles, the output of the accumulator is then send to the
shift and adder module to get the full result. In addition, the
weight matrix contains positive and negative weights, which
stored in two separate crossbars.

ReRAM-based crossbar. Fig. 5 C shows the ReRAM-
based crossbar with 128 × 128 size, which perform parallel
MAC operations. We adopt the single-level cell as the ReRAM
cell, since SLC is more reliable against process variation
compare to the MLC counterpart. The ReRAM array is
implemented with a one-transistor–one-memristor (1T1R) cell
structure, in which one resistance cell with a transistor to
control the write current to facilitate more precise writes to
ReRAM cells. And the peripheral circuits including the word-
line driver, sample-and-hold blocks, multiplexer (MUX) and
MUX controller. The output analog signals are transmitted to
ADC via MUX to perform analog-to-digital conversion, which
is controlled by MUX controller.
The circuit to support flexible control of ReRAM cells.
Fig.5 D indicates the circuit design for controlling ReRAM
cells for flexible controlling. As shown in Fig. 6, each column
and row can be switched independently. Sepcifically, SLCtrl
wires are connected to the DAC and serves as the input
of the crossbar; WLCtrl signals connect the control signals
with the gate of the transistor to controll the connectivity of
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the cell; the BLCtrl signals control whether the BL current
is connected to ADC. These signals enables us to perform
flexible selection of the activated area of the crossbar that are
executed concurrently.

The circuit to utilize bit-level row and column sparsity.
Fig. 5 E represents the circuit supports the index decoder. The
cost of index is taken into account in the algorithm design, and
the storage cost is further reduced via algorithm optimization.
For example, in Fig. 7, the sparsity of each block is stored in
the sparsity table. Each block has a size of 32*32 and ‘1’ in
the table means that the block is not pruned completely. We
use the sparsity table, which is generated offline, to generate
the CSM register (stored output mask). CSM register indicates
whether all columns of bit matrix occupied by a block have
been removed. In the given red frame of cells mapped on
a single crossbar, the 1-th and 4-th cell is ‘0’ in the CSM
register, which means the columns occupied by the first and
fourth blocks have no outputs.

In addition, Fig. 5 F shows the communication between
eDRAM Buffer and register. After bit-flipping, there still
exists plenty of row sparsity in the pruned bit-matrix, as
shown in Fig. 4. Therefore, skipping these empty rows are
necessary to increase computation efficiency and exploit the
performance. The RCM register is used for fetching inputs
from buffer to the register and filter the unnecessary inputs
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(i.e., the corresponding row is empty). The RCM register
consists of a binary sequence in which the ‘0’ identifies
the location of the empty and thus unnecessary row, whose
corresponding input is not required to be entered into the
crossbar for MAC operation.
The circuit to support bit-level inter-crossbar mapping.
Fig. 8 illustrates the the digital circuit we designed to support
the accumulation of bit-level inter-crossbar mapping results.
The input voltages are first applied on each row of all the
crossbars in the same in-situ CU to carry out MAC operation
and get the generated current on each bitline. The currents then
go through the sample-and-hold (S&H) to transfer into volt-
ages. Then, the stable voltage signals of the S&H are passed
to the ADC block to converts them into digital signals (i.e.
OUTi in Fig. 8) one-by-one through the control of the MUX-
based data path. After that, the results are shifted by different
value according to the index of the bit matrix. Finally, they
are padded with zeros through CSM register and accumulated
to get the final result of the current input cycle.

V. EXPERIMENTS

A. Experimental Methodology

Experimental Setup The goal of Bit-Transformer is to im-
prove the throughput and efficiency of the hardware acceler-
ator. We have taken the following factors into consideration
when selecting the benchmarks. They should be sufficiently
representative and diverse enough to cover a range of hardware
performance and overhead caused by compression effect,
ranging from small scale dataset to big scale dataset. Besides,
we implement our Bit-Transformer algorithm framework in
the Pytorch framework to valid it.

We examine our work on classical image classfication tasks,
using several representative DNNs (ResNet18, ResNet50 [2],
VGG16 [26], AlexNet [27], MobileNet-v2 [28]) and two
benchmark datasets (CIFAR-10 [29], ImageNet [30]). We
compare the accuracy and crossbar footprint reduction with

TABLE I: Configurations of GEM5 used in our simulation.

On-Chip Buffer
(DRAM)

HBM 1000 4H 1×128 model;
16KB/Bank

Bank IO Bus 42.56MB/s
ReRAM-based
Main Memory

20MB ReRAM; 100ns/cycle
8 crossbars/CU; 8 CUs/bank;

TABLE II: Comparison of NN accuracy and compression effect.

Network
Ori.
Acc. Method

Proc.
Acc.§

Spar
sity

XB
FP

Sparsity
Type

Re-
RAM

CIFAR-10

VGG-16

93.66 SmartExchange [31] 92.87 94.1% N/A Unstructured X
93.70 PIM-Prune [12] 93.23 N/A 26.85× Structured X
93.70 P-RM [33] 93.2 98.0% N/A Unstructured ×
93.70 Bit-Transformer-W 93.60 99.2% 11.34× Structured X
93.70 Bit-Transformer-X† 92.98 97.3% 32.17× Structured X

ResNet-18

94.58 SmartExchange [31] ‡ 94.54 91.3% N/A Unstructured X
94.14 PIM-Prune [12] 93.84 N/A 24.85× Structured X
94.14 P-RM [33] 93.22 98.3% N/A Unstructured ×
94.14 Bit-Transformer-W 93.97 99.2% 10.18× Structured X
94.14 Bit-Transformer-X 93.34 97.1% 31.98× Structured X

ImageNet

VGG-16

71.18 SmartExchange [31] ‡ 70.97 87.7% N/A Unstructured X
74.5 Pattern-Based [32] 73.6 92.3% N/A Structured ×

71.59 SRE [11] N/A 95.2%o N/A Unstructured X
71.59 Bit-Transformer-W 70.91 91.0% 3.77× Structured X
71.59 Bit-Transformer-X 70.87 89.4% 7.52 × Structured X

ResNet-18

69.9 Pattern-Based [32] 67.1 88.9% N/A Structured ×
69.76 PIM-Prune 68.72 N/A 3.56× Structured X
69.76 Bit-Transformer-W 69.04 88.4% 3.18× Structured X
69.76 Bit-Transformer-X 68.97 86.3% 5.84 × Structured X

ResNet-50

76.13 SmartExchange [31] 75.31 70.1% N/A Unstructured X
76.13 Pattern-Based [32] 75.6 85.3% N/A Structured ×
76.13 SRE [11] N/A 83.9% N/A Unstructured X
76.13 Bit-Transformer-W 75.47 91.9% 3.87× Structured X
76.13 Bit-Transformer-X 75.18 89.2% 7.89 × Structured X

MobileNet-v2

72.19 SmartExchange [12] 70.16 86.79% N/A Structured X
71.88 PIM-Prune [12] 70.11 N/A 1.91× Structured X
71.88 Bit-Transformer-W 71.23 87.17% 2.03× Structured X
71.88 Bit-Transformer-X 70.79 79.87% 3.96× Structured X

§ Proc Acc. is the accuracy of the model be processed. XB FP indicates the crossbar footprint reduction
o The sparsity ratio of SRE is based on the aggressive assumption that SRE can fully utilize the sparsity

in the weights without considering the extra cost.
† The result of our Bit-Transformer-X without retraining or fine-tuning.
‡ SmartExchange uses VGG-19 and ResNet-20 network structure on the CIFAR-10 dataset, and uses

VGG-11 and ResNet-50 network structure on the ImageNet dataset.

the PIM-Prune [12], SRE [11], SmartExchange [31], Pattern-
based [32], and P-RM [33]. For comparison, we take the
results reported in these original works. For results that are
not available, we reproduce their experiments and report the
results.
Simulation Setup We adapt the parameters similar to the
analysis ISAAC with modified GEM5 [34] to build a simulator
for ReRAM-based crossbar architecture, including shift-and-
add module, ReRAM-based crossbar, the HyperTransport links
and other parameters from ISAAC [9] and DaDianNao [35].
The configurations of DRAM, Bank and ReRAM main mem-
ory are shown in Table I. We implemented the entire digital
circuit in SystemVerilog RTL, such as the controller, the
multiplexer, and BL/WL Driver for the input vector. Moreover,
the energy consumption and area overhead of memories,
including eDRAM buffer, input/output register and registers
stored mask (i.e., CSM and RCM Register), are calculated
with CACTI [36] based on 32-nm CMOS process [37]. The
memristors adapted SLC, which have a resistance range of
10KΩ ∼ 100KΩ and crossbar size set as 128 × 128. For
ADC and DAC, the model from [38] is used.

B. Experimental Result

Validation on DNN Accuracy In Table II, “FP” and
“ReRAM” indicate the crossbar footprint reduction ratio and
whether the sparsification method is based on the ReRAM
structure, respectively. “FP” denotes the amount of crossbar
saved to further saving energy and area, which is a key and
intuitive indicator. We can observe that our Bit-Transformer
can achieve nearly 8× and 3× crossbar footprint reduction
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Fig. 9: Crossbar computing error rate versus crossbar sparse rate, using varying crossbar dimension.

with negligible accuracy loss compared to PIM-Prune on
CIFAR-10 and ImageNet. For the more compact MobileNet-
v2, the parameter size is much smaller, we also can reduce
the crossbar footprint by 10× on CIFAR-10. However, many
solutions do not convert the reduced parameters into the
reduction of the crossbar, we use the sparse rate as the metric.
Specifically, for ResNet-50, Bit-Transformer achieve 91.9%
sparse rate with 0.6 accuracy loss compared to SmartExchange
(70.1% sparse rate with 0.8 loss) and SRE (83.9% sparse rate
with unreported loss) on ImageNet.

Impact on the concurrent execution of MACs. Fig. 9 first
shows the relationship between sparsity and error rate under
the different number of wordlines and bitlines for concurrent
execution of MACs in the crossbar. We can find the minimum
sparsity requirements for concurrent execution of MACs of
crossbar. We set the initial input voltages Vread as 1.2V ,
LRS = 10KΩ, HRS = 100KΩ, and vary the sparsity ratio
from 0% to 100%. We set wire resistance from 1Ω to 8Ω for
simulating the IR drop. The error rate (y-axis) is determined on
the output current of the sourceline. We observe that crossbar
size = 32 × 128, crossbar size = 64 × 128 and crossbar size
= 128 × 128 have the zero error under the 50% sparsity
with the wire resistance as 1 ∼ 5Ω. The error rate drop
is attributed to the enhancement of sparsity accomplished
by Bit-Transformer that enables more LRS (low-resistance
state) ReRAM cell on both row or column of a crossbar,
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Fig. 10: Area- and energy-efficiency of between Bit-Transformer and
baseline designs for various networks

which not only increases the information density and the
overall throughput, but also decreases the dynamic power
consumption. We take the minimum sparsity requirement of
each column as the optimization objective of our bit-flip
strategy (refer to Section Section III-C).

Besides, We made strict restrictions on the error rate. We
concurrently execute the MACs of the whole array size and
compare the current of each cell Icell with reference current
Iref = Vread/55KΩ. If the cell’s state is HRS (stores ‘0’) and
Icell < Iref, output current generated by the cell is correct, and
vice versa. And then use the number of cell that produces the
error current by dividing the array size to get the error rate.

Energy, Area Consumption and Performance. Fig. 10
reports the area- and energy-efficiency for the five networks
with 128 × 128 crossbar on the two datasets. We normalize
the area- and energy-efficiency to that of the model without
any sparsification, named Non-Sparse. Specifically, our bit-
flip strategy improves the area-efficiency for more than 31×
on ResNet, VGG16, and AlexNet on CIFAR-10, compared to
20× for PIM-Prune and 14× for SRE (OU size is 4×4). The
energy-efficiency has improved 11× on ResNet, VGG16, and
AlexNet for CIFAR-10, and the effect was much better than
that of PIM-Prune and SRE. The energy and area reduction
against PIM-Prune and SRE is mainly due to the reduced the
crossbars overhead and the resolution of ADCs. For ImageNet,
Our method is still superior to the existing methods, but the
energy- and area-efficiency are limited (i.e., 3× for energy-
efficiency and 5× for area-efficiency on average). To ensure
the accuracy within the acceptable range, the model is difficult
to further compress for large-scale datasets. While for the more
compact MobileNet-v2 which has a much smaller parameter
size, flipping bits makes our Bit-Transformer more effective
for improving the crossbar utilization without accuracy loss.

Fig. 11 shows the speed up over the baseline accelerator
(i.e., ISAAC), we compare the cycles of inference on various
networks. For a fair comparison, we choose the solutions
(SRE [11], PIM-Prune [12]) are based on ISAAC. We can
see Bit-Transformer achieves the best performance under all
the three DNN models on ImageNet. Taking the ResNet-50 as
an example, compared to SRE, PIM-Prune and ISAAC, Bit-
Transformer achieves performance improvement ranging from
31.3× to 121.7×. This experiment verifies the effectiveness
of the algorithm-hardware co-design, Bit-Transformer, and
reduces the computation and improve the throughput. Since
Bit-Transformer takes full advantage of bit-level sparsity of
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the weights, it not only reduces the crossbar footprint for
deploying the model but also improves throughput by sparsity
on the crossbar. Hence, it has a higher speedup than the
baseline. Also, we map each bit of the weight to different
crossbars. After we perform the bit-flip strategy, we realized
an almost unstructured bit-level pruning without introducing
much extra peripheral circuits, making the acceleration effect
of quantization enhenced by such bit-level sparsity.
Indexing Overhead Analysis It is worth noting that the output
mask we stored is much cheaper than the index requirement
of SRE on the column. Besides, all masks we need are based
on block, the size of the block determines the further reduces
the overhead of masks. Fig.12 shows the storage overhead
of different networks varies according to the model size and
block size. Bit-Transformer achieves average of 75% and
53% output register overhead reduction compared to PIM-
Prune and SRE with height × 4 block size; achieves aver-
age of 96.8% and 94.1% output register overhead reduction
compared to PIM-Prune and SRE with 32 × 32 block size
and achieves average of 93.7% and 88.2% output register
overhead reduction compared to PIM-Prune and SRE with
16×16 block size. The larger the network scale (e.g., ResNet-
50 with massive convolution layers), the greater the storage
overhead. However, we benefit from our algorithm framework,
the padded output is continuous by our Bit-Transformer, and
the storage overhead will be further reduced according to the
block size. The block size A × B means the consecutive
A rows shares a mask (1-bit), and consecutive B columns
shares a mask (1-bit). Specifically, for ResNet-50, compared
to SRE (required 778KB input index and 48KB output index),
our Bit-Transformer consumes nearly 100% and 95.6% less
storage of input index and output index with same block size
(16×16) reduces. Because Bit-Transformer performs bit-wise
inter-crossbar mapping, the processed model is deployed on
the crossbar, and a group of crossbars represents the same
bit of different weights. To save the overhead of input MUX,
crossbars in the same group (i.e., store the same bit) share the
input. In this way, we focus on reducing the columns. And

0

10

20

30

40

50

VGG-16 ResNet-18 ResNet-50 MobileNet-V2 AlexNet

Output Mask

Bit-Transformer(height × 4)
Bit-Transformer(32 × 32)
Bit-Transformer(16 × 16)
PIM-Prune
SRE(16 x 16)

S
to

ra
g

e
 O

v
e
rh

e
a
d

 (
K

B
)

Fig. 12: Comparison of output register overhead.

93.8%

94.5%

95.2%

95.9%

96.6%

97.3%

98.0%

0

3

6

9

12

15

18

64×64 128×128 256×256 512×512

4×width energy efficiency width/4×width/4 energy efficiency
height×4 energy efficiency 4×width sparsity ratio
width/4×width/4 sparsity ratio height×4 sparsity ratio

E
n

e
rg

y
-e

ff
ic

ie
n

c
y

A
c
c

u
ra

c
y
 (

T
o

p
-1

)

Fig. 13: Analyzation of the crossbar size and block size

while there is some sparsity on the rows, it can also be stored
on the crossbar to avoid the additional hardware cost of inputs.

C. Design Space Exploration

In this section, we explore the influence of crossbar size
and the block size on our Bit-Transformer.
Impact of crossbar size and block size. Fig. 13 shows the
influence of different crossbar array on sparsification effect
and overhead on ResNet-18 with the accuracy loss <1%. We
change the size of the crossbar array from 64 to 256. Our block
settings are related to the crossbar size so that that block will
change as the size of crossbar changes. For the weight matrix
of ResNet-18, the broader block size is better, because the
weight matrix of ResNet-18 is slender, but our method needs
to split and map to the different crossbars according to bits, so
we have more tolerance on columns. However, for MobileNet-
v2, we can achieve great performance because its convolution
layers’ shape is to match our techniques.

Besides, conventional sparsification methods pursue that the
smaller the granularity, the better the sparsification effect,
while the hardware design desire that larger the crossbar size,
the greater density and energy-efficiency. We can find that the
sparsification effect is the highest when the crossbar size is 64,
but the energy efficiency is the lowest. Therefore, to obtain the
optimal performance, the influence of software and hardware
should be considered in the design process.

VI. CONCLUSION

ReRAM has shown great prospects in neural network ac-
celerator design. However, the non-ideal effects of devices
and circuits leading to the limited throughput. In this paper,
we propose Bit-Transformer, an algorithm-hardware co-design
framework to trade higher bit-level sparsity in weights for
lower-cost and higher-throughout computation, for boosting
the energy- and area-efficiency of DNN inference on ReRAM.
Besides, we design the architecture to efficiently support the
sparsity generated by the proposed algorithm through the well-
designed crossbars with the peripheral circuit. Our evaluation
shows that the proposed Bit-Transformer outperforms other
similar solutions in performance, energy, and accuracy.
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