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Abstract—Resistive Random-Access-Memory (ReRAM) cross-
bar is a promising technique for deep neural network (DNN)
accelerators, thanks to its in-memory and in-situ ana-
log computing abilities for Vector-Matrix Multiplication-and-
Accumulations (VMMs). However, it is challenging for crossbar
architecture to exploit the sparsity in DNNs. It inevitably causes
complex and costly control to exploit fine-grained sparsity due
to the limitation of tightly-coupled crossbar structure.

As the countermeasure, we develop a novel ReRAM-based
DNN accelerator, named Sparse-Multiplication-Engine (SME),
based on a hardware and software co-design framework. First,
we orchestrate the bit-sparse pattern to increase the density
of bit-sparsity based on existing quantization methods. Second,
we propose a novel weight mapping mechanism to slice the
bits of a weight across the crossbars and splice the activation
results in peripheral circuits. This mechanism can decouple the
tightly-coupled crossbar structure and cumulate the sparsity in
the crossbar. Finally, a superior squeeze-out scheme empties
the crossbars mapped with highly-sparse non-zeros from the
previous two steps. We design the SME architecture and discuss
its use for other quantization methods and different ReRAM cell
technologies. Compared with prior state-of-the-art designs, the
SME shrinks the use of crossbars up to 8.7× and 2.1× using
ResNet-50 and MobileNet-v2, respectively, with ≤ 0.3% accuracy
drop on ImageNet.

Index Terms—ReRAM, sparsity, neural network, accelerator

I. INTRODUCTION

Resistive Random-Access-Memory (ReRAM) crossbar

emerges as a promising solution to accelerate the inference

of Deep Neural-networks (DNNs) [1]–[7]. One of the reasons

is that ReRAM accelerators adopt an in-situ scheme that

fastens the weights of DNN on ReRAM crossbars, greatly

reducing the massive cost of data movement in tradition

Von-Neumann structures. In addition, ReRAM crossbar can

perform highly-parallel Vector-Matrix Multiplication (VMM)

by sharing inputs in rows and gathering currents in column

using Kirchhoff’s laws [1], [8]–[10]. However, with the devel-

opment of surprisingly large DNN models such as GPT-3 [11]

with 175B parameters, the increasing requirement of ReRAM

crossbars to accommodate enormous DNN weights become

the main hurdle of this technology.

One of the sources that contributes to the vast demand of

ReRAM crossbar is the tightly coupled layout of the weight

operands on ReRAM cells required by the highly-parallel
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VMM calculation, which makes it difficult to exploit sparsity

in DNNs. Extensive works propose weight sparsification meth-

ods to reduce the number of ReRAM crossbars. Hardware-

independent pruning algorithms, such as filter-/channel-wise

sparsity, can derive a “smaller” dense weight matrices and

directly map them to crossbars [12], [13]. These algorithms,

however, are too coarse-grained and lead to limited spar-

sity utilization. Finer-grained sparsification methods adopt the

software-hardware co-optimization fashion [14]–[16]. These

works first map the weights to crossbars and then prune the

whole crossbar-columns or crossbar-rows. The weight matrix

change asks for extra peripheral circuits to coordinate the

shape of input and output feature maps. Moreover, DNNs have

to be retrained, which is not always feasible in a real-world

scenario [8].

The second source of the vast requirement of ReRAM cross-

bars derives from the small bit-width, i.e., 1-3 bits [17], that a

ReRAM cell can stably store due to process imperfections and

limitation. Thus, quantization is necessary to reduce the bit-

width of the weight. Most existing ReRAM-crossbar accelera-

tors quantize the weight in 8-bits and decompose the 8 bits to 8

cells, respectively. The resulting high-degree bit-level sparsity

is difficult to exploit. A sparse ReRAM-crossbar architecture

SRE [18] attempts to exploit fine-grained sparsity derived

by exchanging the crossbar-columns and crossbar-rows. This

design can also exploit the bit-level sparsity. However, the

hardware overhead, which is brought by the complex control,

costly indexing and routing, almost offsets the area-efficiency

derived from the reduced crossbars.

The fundamental limit of exploiting the sparsity is because

the data mapping and the VMM computation are tightly

coupled with the crossbar structure, denoted as structural-

coupling problem. To solve this problem, in this paper, we

devote to exploit the bit-level sparsity to improve the area- and

energy-efficiency of ReRAM-crossbar based DNN accelera-

tors. We propose an algorithm-hardware co-design framework

called SME by novel weight mapping schemes and data path

design to squeeze out the bit-wise sparsity. SME can apply

to many quantization methods, and it is training-free and

orthogonal to existing pruning methods. The contributions are

summarized as follows:

• We propose a bit-wise sparse pattern and an inter-crossbar

bit-slicing scheme to accumulate the 0-bits to the same



crossbars.

• We propose a squeeze-out scheme that empties highly

sparse crossbars by sacrificing limited amount of least-

significant bits.

• We design the hardware architecture of SME with a

limited 2Kb overhead. The proposed SME reduces up to

8.7× and 2.1× crossbars for ResNet-50 and MobileNet-

v2, respectively, compared with the SOTA method.

II. BACKGROUND AND MOTIVATION

A. ReRAM-based Sparse NN Accelerators

The Structural-coupling problem manifests itself as the

inability to freely skip the multiplication of zero operands

because weight-bits in the same crossbar-row share the same

input, and the current derived by multiplication in cells are

accumulated in the same crossbar-column. In Fig. 2(a), sup-

pose each weight has 4-bit and is partitioned into four cells.

If a single cell containing 0-bit is removed, other cells can

not fill their position since they are from a different row

or column. Moving weight-bits across crossbar-rows/columns

leads to wrong MAC results without modifying peripheral

circuits, as shown in Fig. 2(b).

Structural pruning methods avoid this problem by prun-

ing the weights in a granularity that the whole crossbar-

column (or -row) can be removed at the cost of extra peripheral

circuits [14], [16]. The extra peripheral circuits, including

input-fetching and output-alignment modules, process the raw

feature maps into the pruned weight matrices mapped on the

crossbars. We break down the peripherals’ area overhead and

find that PIM-Prune [16] needs 4KB index storage to skip

fetching the unnecessary activation (multiplied by zero weight)

for ResNet-50. To achieve finer pruning granularity, excessive

peripheral circuits will be introduced to route modified matri-

ces, while a coarse pruning granularity will inevitably modify

weight values and thus requires finetuning to retrieve accuracy.

The weight matrix after structural pruning still contain

many 0-bits. As a result, enormous ReRAM-cells, denoted as

sparse cells, are mapped with 0-bits and do not contribute to

the final result. SRE [18] breaks up crossbars into smaller

parts, namely Operating Units (OUs), to exploit finer-grained

sparsity. SRE utilizes the sparsity of empty OU rows and

columns, which is easier to find than larger empty crossbar

rows and columns. Thus, they can utilize more sparsity that

is impossible to exploit before. However, SRE dramatically

increases the peripheral circuit’s overhead to accumulate the

correct result and introduces 778KB index storage for ResNet-

50. There is a dilemma between the sparse utilization and the

OU size: shrinking the size of OUs can exploit finer-grained

sparsity but significantly increase the index overhead and the

routing overhead of control circuits (see the extra routing in

Fig. 2(b)).

B. Weight Quantization for ReRAM-crossbar

The ReRAM cell is programmed into multiple conductance

levels to represent a value, e.g., a 4-bit value requires 24

different levels. The ReRAM cell’s process limitations [18]

constrain the bit-width of the value a ReRAM cell can store.

Consequently, a weight is conventionally segmented into mul-

tiple subwords and each subword is deployed on a ReRAM

cell. This segmentation results in high crossbar costs. For

example, ResNet-18 with 32-bit weights consumes more than

20, 000 crossbars of 128 × 128 size [17]. Thus, quantization

is compulsory to reduce the bit-width of DNNs’s weight.

On the one hand, some quantization methods only reduce

the variety of weights to shorten the encoding bit-widths of

weights. Quantization using weight clustering [20] and shar-

ing [21] strive to reduce the number of values that represent

weights, but these values are still floating numbers, which can

not shrink the crossbar amount.

On the other hand, some quantization methods can actually

reduce the bit-width of weights on crossbars. Uniform quan-

tization like INT8 quantization [22] is thus a well-accepted

quantization method for ReRAM-crossbar [6]. The resulting

integer values can be well aligned and mapped to ReRAM-

crossbar. Adaptive quantization methods, like HAQ [20], uni-

formly quantize weights using different bit-widths to optimize

both the memory occupation and accuracy. Some other quan-

tization methods such as POWER-OF-2 based quantization

(PO2) [8], [21], [23] quantize values in the form of exponents.

However, they may incur complex finetuning process and they

also need to align the weights to the most and least significant

bit of the whole crossbar, which means that the bit-width on

crossbars will be larger than their encoding bit-width.

C. Motivation for Bit-Wise Sparsity Exploitation

As shown in Fig. 1, we can see a high degree of sparsity

in the quantized weights, especially in the three most signif-

icant bits (MSB). In PO2 quantization, the least-significant

bits (LSBs) also contains many sparsity. However, such bit-

wise sparsity can hardly be exploited by ReRAM-crossbar

accelerators due to the structural-coupling problem. The key

is to decouple the crossbar structure (Section III).

III. SME ALGORITHM

We propose our SME scheme to decouple the crossbar

structure by novel weight mapping algorithms. The SME

mapping algorithm has three steps: quantization, inter-crossbar

bit slicing and squeezing, as shown in Fig. 3.

A. Quantization and Encoding Scheme

We assume single-level ReRAM cell as an example through-

out this paper for simplicity. We quantize and encode the

weights by extending the APT quantization1 [21] that rep-

resents the weight with the sum of several power-of-twos so

that we can increase the bit-level sparsity in crossbars while

retaining the values well to avoid finetuning. We map each

Nq-bit weight onto Nq cells, b1:Nq
:

wq =

Nq
∑

i=1

bi2
−i, bi ∈ {0, 1} (1)

1Other quantization methods, such as adaptive quantization [8], [20] can
also apply to SME, which is discussed in Section V-C.
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Fig. 1: Comparison of the INT8 and PO2 quantization in terms of the bit-level sparsity of weights in the quantized DNNs on ImageNet [19].

In Step 1 , we quantize the weights into sum of power-

of-twos, whose exponent are among S consequtive integers.

The above quantization can be derived by rounding the APT

quantization result as follow:

wq =

min{Nq,k+S−1}
∑

i=k

bi2
−i, k ∈ {1, 2, . . . , Nq} (2)

The maximum absolute value Eq. 2 can represent is |wq| ≤
1−2−S . Consequently, we scale all the weights into that range

using a simple shift operation in the architecture (described

in Section IV). Compared with the INT8 quantization, this

quantization method can increase and accumulate the bit-level

sparsity in a codeword, as shown in Fig 4.

B. Inter-crossbar Bit-slicing Scheme

To decouple the crossbar structure, we propose the inter-

crossbar bit-slicing scheme. The key idea of bit-slicing is

to map the same bit of quantized weights into the same bit

crossbar, as shown in Step 2 . In this mapping process, a

W×H weight matrix quantized with Nq bits is sliced into Nq

bit-sliced matrices of size W×H . Then, each bit-sliced matrix

is further partitioned and mapped to ReRAM crossbars with

size xw × xh.

For example, in step 2 of Fig 3, the bit matrix consisting

of two filters is first bit-sliced into four bit matrices, XB1,5 for

the most significant bit, XB2,6 for the second one and after

that XB3,7 and XB4,8. Specifically, the first weight 1010 in F1
is sliced and mapped onto the top-left cells of XB1−4. MSBs

in filter F1 and F2 are mapped to crossbar XB1 and XB5.

The above mapping scheme can aggregate the sparsity in a
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crossbar (e.g., XB5 and XB8), so that these empty crossbars

can be saved by the mechanism of light-weight index [16],

[18], [24].
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It is worth noting that this bit-slicing mapping scheme

requires minor modification on the peripherals (refer to Sec-

tion IV-B), and demands the same amount of peripheral

circuits, such as ADCs, shifters, and adders, as conventional

mapping method.

C. Bit-wise Squeeze-out Scheme

In the previous section, we aggregated a large amount of

sparsity by the bit-slicing scheme so that some of the crossbars

become empty and can be saved directly, but there are still

crossbars that are very sparse and cannot be saved directly.

We shrink the sparsity from the full crossbar to a smaller

granularity, rows, since all the cells in the same crossbar-row

share the same input. Fortunately, our SME approach make

sure that the first few most-significant bit matrices are highly

sparse. Fig. 5 shows that less than 10% non-empty rows in

the most significant bit matrix in average. Based on above

observation, we propose a clever squeeze-out scheme that

circumvents the structure couple problem. The essence is row

swapping among the crossbar group, but without introducing

either overhead or large accuracy loss.

In Step 3 , we squeeze the crossbar-rows containing non-

zeros in preceding XBs to the subsequent XBs until these

rows in tailing XBs are dropped out. For example, the first

crossbar-row in XB1 is remapped to XB2, whose first crossbar-

row is shifted to XB3. And the LSB crossbar XB4 drops its

first crossbar-row. Based on step 1 , release these crossbars

will lead to no loss on network’s accuracy. A corresponding

operation on the input of these rows is performed. This step

does not introduce extra indices for accumulating the output.

The following observations inspire the bit-wise squeeze-out

scheme: the first few bit matrices are too sparse to compose
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Fig. 5: Non-empty row statistics of crossbars stored MSB of the
ResNet-18.

a single crossbar. According to our bit-wise sparse pattern,

‘1’s will only appear in successive positions after its most

significant bit, which means that for the weights whose first

few bits are ‘1’, their last few bits must be ‘0’. We can

empty crossbars that store the MSB by squeezing-out these

bits without changing the actual quantized weight.

After squeeze-out by one bit, the corresponding non-empty

contents in XBj
i are moved to XBj+1

i (j ∈ {1, 2, · · · , Nq})

and these contents in the last bit crossbar XB
Nq

i are aban-

doned. According to Eq. (2), the value in that row is approx-

imately halved with 1-bit squeezed. To ensure the invariance

of the calculation results, we propose a scheme to double the

input (refer to Step 3 in Fig. 3). Note that we can even

perform this step iteratively to squeeze-out multiple bits.

In this paper, we use the same style of input as in

ISAAC [1]. The input is converted into bit-serial voltage and

the number of cycles required is equal to the bit-width of the

input. If we squeeze out with x-bit, we delay the input of these

rows for x clocks, which implemented by Fig. 6 B .

Assume that the weights and inputs are both 4-bit and we

perform the squeeze-out scheme for 1-bit. For example, in

Fig. 3 2 , the first row in XB1 is non-empty. Starting from

XB1, the crossbar’s non-empty rows are placed at the same

position in the latter crossbar, and the rows of the last crossbar

(XB4 in Fig. 3) are dropped out. After that, the crossbar XB1

storing MSB (i.e., 2−1) can be saved, and the bit-width of

weights changes from 4- to 3-bit. The bits representing 2−1 in

XB1 is moved to XB2 and represent 2−2, which means the part

of weight shrinks by half (i.e., W1 changes from 10 = 1010(2)
to 5 = 0101(2)). Thus, we shift the input of the first row one

bit to the left (input × 2), which acts on the first row in

each remaining crossbar (i.e., XB2 ∼XB4) to make up for the

changes in weight, i.e. I1 × W1 = (I1 × 2) × (W1/2). This

process equals to delaying the input one cycle, which means

that the cycle of input changes from 4 to 5. As a result, the

total amount of computation changes from 4×H ×W × 4 to

5×H ×W × 3, the computation has been reduced.

IV. SME ARCHITECTURE

A. Architecture Overview

We present the overview of SME architecture, aiming at in-

ference in edge devices. As shown in Fig. 6, each bank consists

of three parts, all of which are connected to the shared bus: 1)

the controller decodes instructions and provides control signals

to all the peripheral circuits; 2) in-situ Computation Units (CU)

is the core computing and storage unit; 3) the shared blocks

contain the activation unit, pooling unit, and eDRAM buffer

for storing activations (i.e., intermediate computing results).

The SME add-on hardware implements the computation func-

tion of matching our algorithm, including simple modifications

to the existing crossbar peripheral circuits, which is easier to

manufacture than integrate complex logic into the chip.

B. Module and Dataflow

Controller. Controller in Fig. 6 A provides control signals

to all the peripheral circuits and drive the finite state machines
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that steer the inputs and outputs correctly after every cycle

based on the technique configurations.

In-situ Computation Unit. Fig. 6 C shows the CU that

is composed of crossbars and peripheral circuits. It includes

DAC/ADCs for data conversion, accumulator and shifters,

which sum up the partial sums of crossbars, and shift-adder

unit for aggregating the partial results of input cycles.

First, the input is in the form of the bit sequence, and

then each cycle enters respectively 8 crossbars to the same

in-situ CU to carry out MAC operation, and each gets the

output currents. After output current generated on SL, first,

latch the computation results by S&H circuits, and then send

128 analog voltages to ADC to convert them into digital

signals through a MUX. In each cycle, 8 crossbars are sampled

in parallel, and a calculation result of different bits of the

same weights is obtained through the corresponding shifter is

connected to each crossbar. Then, these results are sent to the

accumulator to generate the complete calculation results of the

weight. Finally, the results transmit into the output register for

updating the outputs by shifting and adding. After traversing

the 128 samplings, the next cycle calculation is repeated.

ReRAM-based crossbar. Fig. 6 D shows the ReRAM-based

crossbar with 128 × 128 size, which perform parallel MAC

operations. We adopt the SLC as the ReRAM cell since SLC

is more reliable against process variation compare to the MLC

counterpart. The ReRAM array is implemented with a one-

transistor–one-memristor (1T1R) cell structure, in which one

resistance cell with a transistor to control the write current

to facilitate more precise writes to ReRAM cells. Moreover,

the peripheral circuits, including the word-line driver, sample-

and-hold blocks, multiplexer (MUX) and ADCs. The output

analog signals are transmitted to ADC via MUX to control

analog-to-digital conversion.

Buffer Connection, which supports the squeeze-out strategy.

Fig. 6 B shows the communication between eDRAM Buffer

and input register. The RCMR is used for fetching inputs from

buffer to the register, which needs to convert the bit-width of

input enable increase input cycle caused by the squeeze-out

strategy (refer to Section III-C). Data from the buffer pass

through the RCMR and the controller determines whether the

squeeze-out scheme needs to be performed at the current layer,

and if it does, the inputs bit-width will be extended to (8+x)-
bit (we initially default the weights were quantized to 8-bit).

The shifter follows the RCMR, ‘1’ means to shift x-bit to

the left, while ‘0’ indicates padding x zeros in front of MSB.

After that, data transmit into the input register.

C. Latency Analysis

In the proposed architecture, different configurations of

the crossbar and our bit-wise squeeze-out scheme (mentioned

in Section III-C) will directly influence the computing latency

and the hardware overhead. The main design parameters of

PEs include the design choices of the degree of squeeze-

out and the crossbar size. This subsection will introduce the

analysis of design choices and hardware performance.

Assume the crossbar size is K×K, Mw is the bit-width of

weights, and Ma is the bit-width of inputs. We map K ×K
weights in Mw crossbars and feed the input in through the

DACs serially 1-bits at a time. The MAC operation is finished

in Ma cycles. The squeeze-out operation begins with inter-

crossbar bit-slicing scheme. Here, we index the sliced cross-

bars from MSB to LSB with XBm, and m = [1;Mw], such

that m = 1 and m = Mw are corresponding to MSB and LSB,

respectively. D is the degree of being squeezed, representing

the number of iteration in squeeze-out scheme. Specifically,

the squeeze-out degree increases by 1 with squeezing 1-bit

along the direction of bit-width. We take Fig. 3 as an instance

to intuitively illustrate this process, D = 1 denoted as sliced

crossbars change from XB1 ∼ XB8 to XB2 ∼ XB8.

Those kernels mapped in sliced crossbars could be duplicated

in different computation units and take multiple input data

to generate independent outputs simultaneously. In this case,

we need to duplicate K × Mw × Ma kernels which allows

to speed up without performing the squeeze-out scheme. If

we further squeeze-out with D bits, resulting in a reduction

in the number of crossbar by D. However, the cycles it

takes for MAC operation to complete increase from Ma to

Ma + D. The rows are partitioned into two parts according

to the performed squeeze and the none performed, denoted

as A and B respectively. Then we can calculate the number

of duplicates needed to achieve the speedup. Only if the

number of duplicates needed after the execution of squeeze

is smaller than that of unexecuted ones, the optimization will

have a performance benefit. Its formulated expression can be

mathematically described as:
(

(Ma +D)×A+Ma ×B
)

× (Mw −K)

= KMwMa −KMwD +DAMw −D2A ≤ KMwMa

s.t. A+B = K

(3)



Without loss of generality, in this paper, we take K = 128,

Ma = 8 and Ma = 8. If we squeeze 1-bit, i.e., set D = 1,

then the overall performance gain increases as long as the

squeezed rows are less than 146 (i.e., A ≤ 146). As described

in Fig. 1, almost all the layers in ResNet-18 satisfy this

condition. According to Eq. (3), we can find that: (1) the

larger the degree of being squeezed D, the size of crossbar

K and input bit-width Ma, the more feasible the scheme; (2)

when the weight bit-width Mw is getting smaller, the scheme

becomes more feasible accordingly (i.e., A is larger).

V. EXPERIMENTS

A. Experimental Setup

TABLE I: Parameters of the CU in SME Architecture

In-situ Computation Unit Hardware Configuration
(1GHz, 32nm process, 128 banks per chip, 12 CUs per bank)

Components Param Spec
Area

(mm
2
× 10

−3)

Power

(mW)

MUX
Array

number 8 4.23 0.56

S&H number 8× 128 0.03125 0.0011

ADC
resolution 6-bit

4.7 5.14number 8
frequency 1.2GSps

DAC
resolution 1-bit

0.34 4.25
number 8× 128

Memristor
Array

size 128× 128

2.03 1.3bits-per-cell 1
number 8

Table I summarizes the parameters and their power/area

values of each CU in our SME. We redesign the data path

since we add some peripheral circuits to integrate the tech-

niques. Moreover, the energy consumption and area overhead

of memories, including eDRAM buffer, input/output register,

and registers stored mask (i.e., RCM Register), are calculated

with CACTI [25] based on the 32-nm CMOS process. For

ADC and DAC, the model from [26] is used. The memristors

adapted SLC-based ReRAM devices with a resistance range

of 10KΩ ∼ 100KΩ and crossbar size set as 128 × 128.

We model the power and area for ReRAM devices using the

results from [27]. We modify NVSim [28] with these models

to estimate time, area and energy consumption.

We use the ISAAC as the baseline. We evaluate our work

on classical image classification task, using several represen-

tative DNNs (VGG-16 [29], ResNet-18/50 [30], MobileNet-

v2 [31]) on CIFAR-10 [32] and ImageNet ILSVRC-2012 [19].

We compare with the PIM-Prune [16], SRE [18], SmartEx-

change [24]. For results that not available, we reproduce

their experiments and report the results. Our method can also

combine with other sparsity utilization solutions, such as SRE,

PIM-Prune, etc. We implement our SME algorithm framework

in the Pytorch framework [33] to valid it.

B. Results and Analysis

1) Accuracy and Sparsity: Tab. II first shows the NN accu-

racy for the networks on CIFAR-10 and ImageNet datasets. We

can observe that our SME and other solutions are orthogonal

and can further improve the effect when combined with
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Fig. 7: Normalized energy- and area-efficiency on various neural
networks.

the exciting methods with negligible accuracy loss, even on

the large-scale dataset. Specifically, for ResNet-50 on the

ImageNet, SME combined with PIM-Prune achieves 91.23%
sparse rate with 0.6 accuracy loss compared to SmartExchange

(58.6% sparse rate with 2.07% accuracy loss) and PIM-Prune

(71.91% sparse rate with 1.10% accuracy loss) on ImageNet.

TABLE II: Inference accuracy on ImageNet

Model Ori.Acc (%) Method Acc.(%) Sparsity (%)

CIFAR-10

VGG-16

93.66 SmartExchange 92.87 92.80
93.7 PIM-Prune 93.23 93.10
93.7 SME 93.6 84.15

93.7 SME+PIM-Prune 93.18 97.11

ResNet-18

94.58 SmartExchange 94.54 91.30
94.14 PIM-Prune 93.84 91.71
94.14 SME 94.19 83.19

94.14 SME+PIM-Prune 93.85 96.97

ImageNet ILSVRC-2012

ResNet-50

76.13 SmartExchange 74.06 58.60
76.13 PIM-Prune 74.91 71.91
76.13 SME 76.03 67.35

76.13 SME+PIM-Prune 75.46 91.23

MobileNet-v2

72.19 SmartExchange 70.16 79.79
71.88 PIM-Prune 70.11 77.13
71.88 SME 71.57 78.74

71.88 SME+PIM-Prune 71.02 84.51

2) Energy- and Area-Efficiency: Fig. 7 shows the energy-

and area-efficiency of different accelerators for the four net-

works. We normalize the energy-efficiency to that of the model

without any compression. On average, for ImageNet, SME

improves energy efficiency by 2.3× and area efficiency by

6.1× on ResNet-18/50 compared to PIM-Prune and SRE. Even

on MobileNet-v2, our method is still superior to the existing

methods. The reason is that the pruning-based methods are

difficult to compress networks for large-scale datasets or

compact networks with acceptable accuracy. However, high-

degree bit-level sparsity always exists and can be used by our

SME. Even on MobileNet-v2 the area-efficiency, our method

also improves 2.7×. The energy and area reduction against

PIM-Prune and SRE is mainly due to the reduced crossbar

resources and less overhead. Compared to PIM-Prune and
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Fig. 8: Comparison of NN accuracy and the number of crossbars with
our different scheme on ResNet-18. Baseline is quantized with INT8
method.

SRE, SME improves energy efficiency by 2.3× and area

efficiency by 6.1× on average.

3) Varied squeeze-out schemes with crossbar resource:

Fig. 8 reports the results with the different squeeze-out

schemes. We respectively compare the accuracy and necessary

crossbar resources of squeezing 1,2,3 bits. We use the squeeze-

out scheme to reduce the number of cells representing weights

far better than directly reducing because the MSBs are more

critical than the LSBs. If we can reduce the error caused by

the MSBs, the overall error can be effectively decreased [17].

4) Sweet-spot for the size of consecutive region containing

‘1’: As our discussion in section III-A, Fig. 9 shows the

trade-off between the sparsity and quantization error caused

by different number S of consecutive ‘1’. We use mean square

error (MSE) to measure the loss caused by quantization, which

is defined as the absolute difference between the exact and the

approximate weights [8]. In Fig. 9, we find if we set S = 2,

the overall sparsity of the network began to decrease, while

S = 4, the overall error of the model, is almost zero. However,

we combine with the overall sparsity and the bit-level sparse

distribution. We can find that S = 3, SME achieves an optimal

point for ResNet-18.
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5) Overhead Analysis: Fig. 10 shows the storage overhead

of different networks. On average, SME achieves 84.6%
and 98.1% register overhead reduction compared to PIM-

Prune and SRE with only quantization and bit-slicing scheme;

achieves 77.8% and 96.8% register overhead reduction com-

pared to PIM-Prune and SRE further combining with the

squeeze-out scheme. However, the significant reduction in

overhead benefits from two parts: (1) our squeeze-out scheme

solves the index’s problem for aligning the output by process-

ing the input. (2) we retain crossbars if the crossbar cannot be

released, so the index is continuous. Specifically, for ResNet-
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Fig. 10: Comparison of storage overhead with different networks.

50, compared to SRE, which requires the 778KB register

for the index, our SME consumes nearly 100% (i.e., without

input index) and 95.6% less storage of input index and output

index. However, the significant reduction in overhead benefit

from our algorithm framework design, the padded output is

continuous by our SME, since we aim to reduce the crossbar

resources. If the crossbar resources cannot be released, the full

crossbar is retained, which is only represented by the special

symbol that skips the current crossbar’s routing.

C. Design Exploration

In this section, we discover our method can support the net-

work with intra-layer mixed-precision [20], and also support

MLC-based crossbar but perform better on SLC.
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Fig. 11: The number of crossbar for ResNet-18 with mixed-precision.

1) Support intra-layer mixed-precision: Fig. 11 shows the

crossbar (128× 128) consumption of ResNet-18 quantized by

intra-layer mixed-precision under conventional mapping and

our SME method. The pie chart of the Fig. 11 also shows the

mixed-precision contains 5 to 8-bit in layers of ResNet-18.

The conventional mapping approach cannot take advantage

of mixed-precision benefits due to structural-coupling. The

weights within a filter are mapped to crossbars, and the

maximum bit-width of weights determines the number of

cells required per weight. So there are massive sparse cells.

In contrast, the SME slices each bit of the weights into

different crossbars, aggregating the bits’ sparsity. This achieves

decoupling of the crossbar structure, reducing over 1, 000
crossbars than the conventional mapping method.

2) Support MLC-based crossbar: Fig. 12 shows that our

bit-slicing scheme is also applicable to MLC-based crossbar.

The number of sparse cells is significantly decreased when

the network is mapped onto the MLC-based crossbar. Thus,

our bit-slicing scheme’s benefit is also affected, as we reduce
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approximately 11% crossbars compared to the conventional

mapping scheme. Besides, we can use the squeeze-out scheme

to save resources further, and squeeze one MLC-based cell is

equivalent to squeezing 2-bit on the SLC-based crossbar.

VI. CONCLUSION

Bit-level sparsity cannot be utilized, leading to the limited

performance of NN inference. We propose SME, an algorithm-

hardware co-design framework that decouples the hardware

dependence of multiplication to release the sparse cells in the

crossbars for higher energy-/area-efficient inference of NNs.

Besides, we design the architecture to efficiently support our

algorithm through well-designed crossbars with the peripheral

circuit. Our evaluation shows that the proposed SME outper-

forms other similar solutions in energy, area, and accuracy.
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