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Motivation Adaptive Floating-Point Quantization Results on ImageNet

> EXxisting quantization methods can be generally separated into non- > AFP owns varying bitwidth for exponent and mantissa parts (ng,, Quan. Bit ~ First Last  Acc.  Acc.loss  Quan No  Data
uniform methods, and uniform methods. and n_...), Where the bit-width are chosen w.r.t the target scheme width layer layer Top-1(%) Top-1(%) type  retrain formal
> Since many users are incapable of retraining DNN due to the lack application. ResNet-50
of computing-resource or retraining data, quantization without > |In contrast to the fixed bias term adopted by the FP32 (i.e., k = 127), Full precision 32 32 32 76.13 - - -

- - - - INTS [12] 8 8 8 74.9 -1.5 Uniform v INT
retraining becomes the most popular compression method in many we make such a bias term a tunable as well. V-0 [23 - ; - 1< 2 097 oo g Ep
real-world scenarios. Uniform Non-uniform Non-uniform (logarithmic) AFP-N (Ours) Biscaled-FxP [13] 6 6 6 70.46 -5.67  Non-uni. v INT

> Low latency is critical for real-time interactions, while low energy N — QT , ADMM [31] 6 6 6 75.93 0.2 Nonm-uni. FP
nsumption can help companies reduce cost in data-centers and NENEENE * - | INQ [5] > 2 92 sl 159 Non-unk. i
consump p comp _ Qe g | Focused-C.[34] 5 5 5 758  -154  Nonuni x  FP
improve the endurance of edge devices. T R o SR | APT [17 4 32 32 7595 -0.18  Non-uni.  x FP
T 2Qst-——- bl B Q- | UNIOQ [2] 4 4 4 74.84 -1.29  Non-uni.  x FP
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aHidh are ([:):: tfﬂme,]a?us prediction accuracy S oo :H.E 1 E i, : | this work(dynamic) 4.8 S 3 76.09 -0.04 Non-uni. v FP

AHig Fixed-point TS Data f X Q- : : o ng___ :{ }: this work(dynamic) 3.9 4 4 75.27 -0.86 Non-uni. v FP \
/ ekl SN S T S SR I 2 | this work (static) 4.8 B E 76.00 -0.13  Non-uni. FP
T omen forrmat — PP b N 1 | thiswork(staticc 39 4 4 7511  -102 Nonuni. FP
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o —\ with retraining e xponent 20%1 213@4, 6 Weichts With W4.7-A4.8: Acc. 76.09 (0.04 acc. loss) |

> <4 0ur Method QD \ or fine-tuning (b) (C) (d) 2071492 g

E PACT!'J A without retraining > Layer-wise Quantization with AFP ¢
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< /f o TneTHEng * Determine bias: The bias is chosen to allow the maximum value of 2

Da .,al Lcjrrﬂm / quantized weights and _the_maximum value of weights to t_>e _con§istent, = layer
| Need De-quantization and the range of quantization can cover as much of the distribution of ®
& Re-quantization weights as possible. ,
] o * Determine the bit-width of exponent: The bit-width of exponent should
ow : : , ! ; : ,_,H_'g; be determined to enable that the range of exponent part can adequately 4
Hardware Cost cover the distribution of the weights. ; Activations
> Most dynamic quantization methods have to perform the * Determine the bit-width of mantissa: The mantissa is a component of a

M Hweight bit (Sign) M #weight bit (Exponent) ' #weight bit (Mantissa) M #activation bit (Exponent) = #activation bit (Mantissa)

Hardware cost with the sweet-spot

finite floating-point number, with the radix point immediately following the
first digit.

Search time

dequantization and re-quantization process to rescale parameters
with the aim of ensuring accuracy.

> As the trade-off of prior quantization methods in terms of data

Hardware efficiency
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format precision and hardware efficiency, we develop a floating- ResNet-50 10° , | AR 29°2-3| 61.5 7000
point representation variant, named Adaptive Floating-Point [ e
(AFP) ’ 30 — A={]24 0% WM Shifter M Shifter 7 L6000
' | - A=0.50 B Others Bl Others
Comparison numeric format with INT8, FP32/16, BFP16 and TF32 10*{ W= Multiplier — Multlpller I I © 000
range: ~16* to~3¢* 20 . Adder Adder O 6 =) 1000 4
FP32 | sign 8-bit exponent 23-bit mantissa m %ﬂ] E. E. ok 9
. nq 238 38 o — = =
I’Eiggﬂ. ~1e™ to ~3e s 1|I 1{|_J.1D‘51 | 5 an| e 3000
TF32 |sign| 8-bitexponent 10-bit mantissa 10 'J g
I'Elllgﬂ: ~5.96° to~6.58 \ D' N 2459 ThE SWEEt Sp':'t 2000
FP16 | sign [ 5-bit exponent| 10-bit mantissa 4 -
range: ~1é% to~3¢3° 0 N O N 10 . N 200.2
BF16 | sign| 8-bitexponent |7-bit mantissa \+ 1) \ \ Y )
, g:‘? -\«1; ¢° 0C) pFP) ~(FP L P 3
e g 0 10 20 Q® ﬂﬂaﬁk@ﬂ P b:‘ oy ?‘g@‘a lp" o\ PO 0.0 0.5 1.0 o 1 2 3 4 5 6 7
INT8 | sign| 7-bitinteger iteration (a }ResNet—EU (b) MobileNet-v2 A Exponent part

(a) (b)




	Improving Neural Network Efficiency via Post-training �Quantization with Adaptive Floating-Point �Fangxin Liu1, Wenbo Zhao1, Zhezhi He1, Yanzhi Wang2, Zongwu Wang1, Changzhi Dai3�Xiaoyao Liang1 and Li Jiang1�Shanghai Jiao Tong University, Northeastern University, DeepBlue Technology (Shanghai) Co., Ltd.

